Figuring out compounding interest

  1. Mar 25, 2012 #1
    I talk to people a lot about the power in investing their money. I've always relied on Excel to figure out things though and I'm getting sick of it. So I figured there was a way to do it simpler with math than making gigantic lists that detailed every month and year a person invests money.

    So, let's say I have 10,000 and will expect an 8% yearly return on it. I figured out a formula or whatever that will give me the correct answer quickly:

    10,000 * 1.08^n

    Or say it was for 20 years: 10,000 * 1.08^20

    This is great. But it doesn't do a whole lot because people generally contribute money regularly to their investments. Which gets me to my question...


    I wanted to keep it simple. Let's say a person has $100. They invest it and can expect to earn 8% every year. Additionally, they add an additional $100 every year. The answer I got in Excel was $4,044.63 after 18 years.

    After countless months beating my head against a wall and talking to my cat, I came up with this:

    100(1+.08)18+100[((1+.08)18-1)/.08]

    However, that equals $4,144.63. And to be honest, I don't remember how the heck I came up with that crazy looking equation. :(

    But, it is giving me the wrong answer! By $100!!!!! I must be doing something right. lol

    Can anyone help me simplify and understand this? Thanks!
     
  2. jcsd
  3. Mar 25, 2012 #2
    Your formula is correct, the difference is that you are assuming that the person invests $10,000 plus an additional $100 on day one. The formula that excel uses is starting the yearly $100 investments at the end of the first year.
     
  4. Mar 25, 2012 #3
    I don't understand. Is there just a regular formula with x's and y's and all those happy letters that does this? You know, where I can just plug the numbers in. The formula above I forgot how I came up with it.

    The answer isn't as important to me as understanding it. Not that I don't want an answer - I do. But I need to understand it. Understanding it is paramount to me. I hope by learning the why - I can figure out equations on my own easier in the future.
     
  5. Mar 25, 2012 #4

    rcgldr

    User Avatar
    Homework Helper

    If the yearly investment and the interest rate are fixed, you could use power series to solve this:

    let a = 1.08

    you want to calculate the sum a^18 + a^17 + ... + a^1

    multiply by a = a^19 + a^18 + ... a^2

    subtract the original equation:

    Code (Text):

     a^19 + a^18 + ... + a^2
                a^18 + ... + a^2 + a^1
    --------------------------------
     a^19                            - a^1
     
    So the result is (a - 1)(a^18 + a^17 + ... + a^1) = (a^19 - a^1)

    To get the original number divide by (a-1)

    (a^18 + a^17 + ... + a^1) = (a^19 - a^1)/(a-1)

    For your case you have 100 x (1.08^19 - 1.08) / (1.08 - 1) ~= 4044.6263239

    Although this is nice for doing algebra, it's probably better to use a spread sheet, to handle variations in monthly deposits, changes in interest rates, and also allowing for interest that is compounded monthly (or daily) instead of yearly.
     
    Last edited: Mar 25, 2012
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Similar Discussions: Figuring out compounding interest
Loading...