MHB Find 4-adic Expansion of $\frac{1}{5}$ - Wondering

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Expansion
AI Thread Summary
The discussion focuses on finding the 4-adic expansion of 1/5, with the initial calculations leading to coefficients a_0=1, a_1=3, and a_2=0. The calculations reveal a pattern where the coefficients alternate between 3 and 0 after the initial term. The final result suggests that the 4-adic expansion of 1/5 can be expressed as (03)1.(0) in base 4. The discussion also highlights the distinction between quaternary and 4-adic number expansions, noting that they share the same arithmetic operations despite differing metric spaces. Overall, the thread concludes with the identification of the 4-adic representation of 1/5.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find the $4$-adic expansion of $\frac{1}{5}$. I have done the following: $\displaystyle{\frac{1}{5}\equiv a_0\pmod 4 \Rightarrow a_0\equiv \frac{1}{5}\pmod 4}$
We multiply by $5$ and we get $\displaystyle{5a_0\equiv 1\pmod 4}$.
The only residue of division by $4$ that solves this is $a_0=1$. Then we have $\displaystyle{\frac{1}{5}-1\equiv 4a_1 \pmod {4^2} \Rightarrow -\frac{4}{5}\equiv 4a_1\pmod {4^2}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}\equiv a_1\pmod {4}}$.
We multiply then by $5$ and we get $\displaystyle{-1\equiv 5a_1\pmod {4}\Rightarrow 5a_1\equiv -1 \pmod 4 \Rightarrow 5a_1\equiv 3\pmod 4 \Rightarrow a_1\equiv 3\pmod 4}$. The only residue of division by $4$ that solves this is $a_1=3$. Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^2a_2 \pmod {4^3} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^2a_2\pmod {4^3}}$.
We multiply by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4a_2\pmod {4^2}\Rightarrow -\frac{16}{5}\equiv 4a_2 \pmod {4^2}}$, we multiply then by $5$ and we get $\displaystyle{-16\equiv 20a_2\pmod {4^2} \Rightarrow 0\equiv 4a_2 \pmod {4^2} \Rightarrow 4a_2\equiv 0\pmod {4^2}}$. We divide by $4$ and we get $\displaystyle{a_2\equiv 0\pmod {4}}$. The only residue of division by $4$ that solves this is $a_2=0$. Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^3a_3 \pmod {4^4} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^3a_3\pmod {4^4}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4^2a_3\pmod {4^3}\Rightarrow -\frac{16}{5}\equiv 4^2a_3 \pmod {4^3}}$, then we divide by $4^2$ and we get $\displaystyle{ -\frac{1}{5}\equiv a_3 \pmod 4}$. Then we multiply by $5$ and we get $\displaystyle{ -1\equiv 5a_3 \pmod 4\Rightarrow 5a_3\equiv -1 \pmod 4 \Rightarrow a_3\equiv 3 \pmod 4 }$. The only residue of division by $4$ that solves this is $a_3=1$.


Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4-4^3\equiv 4^4a_4 \pmod {4^5} \Rightarrow -\frac{4}{5}-3\cdot 4-4^3\equiv 4^4a_4\pmod {4^5}}$.
We divide by $4$ and get $\displaystyle{-\frac{1}{5}-3-4^2\equiv 4^3a_4\pmod {4^4}\Rightarrow -\frac{16}{5}-4^2\equiv 4^3a_4 \pmod {4^4}}$, then we divide by $4^2$ and get $\displaystyle{ -\frac{1}{5}-1\equiv 4a_4 \pmod 4^2 \Rightarrow -\frac{6}{5}\equiv 4a_4 \pmod {4^2}}$. We multiply then by $5$ and get $\displaystyle{ -6\equiv 20a_4 \pmod {4^2}\Rightarrow 20a_4\equiv -6 \pmod {4^2} \Rightarrow 4a_4\equiv 10 \pmod {4^2} }$.
This doesn't have a solution, right?

Where have I done something wrong? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
I want to find the $4$-adic expansion of $\frac{1}{5}$. I have done the following:

.
.
.

Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^3a_3 \pmod {4^4} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^3a_3\pmod {4^4}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4^2a_3\pmod {4^3}\Rightarrow -\frac{16}{5}\equiv 4^2a_3 \pmod {4^3}}$, then we divide by $4^2$ and we get $\displaystyle{ -\frac{1}{5}\equiv a_3 \pmod 4}$. Then we multiply by $5$ and we get $\displaystyle{ -1\equiv 5a_3 \pmod 4\Rightarrow 5a_3\equiv -1 \pmod 4 \Rightarrow {\color{red}a_3\equiv 3 \pmod 4 }}$. The only residue of division by $4$ that solves this is $\color{red}a_3=\Huge 3$.


Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4-4^3\equiv 4^4a_4 \pmod {4^5} \Rightarrow -\frac{4}{5}-3\cdot 4-4^3\equiv 4^4a_4\pmod {4^5}}$.
We divide by $4$ and get $\displaystyle{-\frac{1}{5}-3-4^2\equiv 4^3a_4\pmod {4^4}\Rightarrow -\frac{16}{5}-4^2\equiv 4^3a_4 \pmod {4^4}}$, then we divide by $4^2$ and get $\displaystyle{ -\frac{1}{5}-1\equiv 4a_4 \pmod 4^2 \Rightarrow -\frac{6}{5}\equiv 4a_4 \pmod {4^2}}$. We multiply then by $5$ and get $\displaystyle{ -6\equiv 20a_4 \pmod {4^2}\Rightarrow 20a_4\equiv -6 \pmod {4^2} \Rightarrow 4a_4\equiv 10 \pmod {4^2} }$.
This doesn't have a solution, right?

Where have I done something wrong? (Wondering)
It looks as though the coefficients will be alternately $3$ and $0$ (after the initial $1$).
 
Show that 1/5 is ...
View attachment 6286

Using () to represent the repeated digits under the vinculum and everything base 4.
Then show that 1/5 is ...
(03)1.(0)

Step 1: Calculate 4/5 (base 4)

Code:
      0.3030...
    ------------
11 / 10.0000...
      3 3
      ---
        100
         33
        ---
          etc.


Step 2: Calculate -4/5 (4-adic)
Notice that
if n = ...3030.3030...
then 100 n = n
Therefore n=0
and
-4/5 = (03)0.(0)Step 3: Calculate 1/5 (4-adic)
using 1/5 = 1+(-4/5)
1/5 = (03)1.(0)Note: Quaternary and 4-adic number expansions have different metric spaces. However, they share the same arithmetic for the + and * operations.
 

Attachments

  • Capture.JPG
    Capture.JPG
    3.7 KB · Views: 114
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top