MHB Find ∠A & ∠C in Triangle Geometry

  • Thread starter Thread starter Lemoine
  • Start date Start date
  • Tags Tags
    Geometry Triangle
Click For Summary
In triangle ABC, with internal bisectors AD and CE intersecting at points D and E, given angles ∠CED=18° and ∠ADE=24°, angle ∠B is calculated to be 96°. The challenge lies in determining angles ∠A and ∠C, which are found to be 12° and 72°, respectively, through geometric constructions and trigonometric relationships. A suggested method involves dropping perpendiculars from points E and D to the respective bisectors, leading to further angle relationships. Ultimately, the calculations confirm the angles as derived from both geometric and trigonometric approaches.
Lemoine
Messages
1
Reaction score
0
Let △ABC be a triangle. Let AD and CE be its internal bisectors, with D lying on BC and E lying on AB. Given that ∠CED=18° and ∠ADE=24°, how can I find angles ∠A and ∠C without aid of softwares? Angle ∠B is easy to calculate, as
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions. A teacher suggested me to drop perpendiculars from E to AD and from D to CE. Let E′ be the reflection of E over AD and D′ be the reflection of D over CE. Both D′ and E′ lie on AC, as AD bisects EE′ and CE bisects DD′.

What I found:
∠CED′=18°
∠ADE′=24°
∠DEE′=∠DE′E=90°−24°=66°
∠EDD′=∠ED′D=90°−18°=72°
∠E′ED′=66°−2⋅18°=30°
∠D′DE′=72°−2⋅24°=24°
 
Mathematics news on Phys.org
Lemoine said:
Let △ABC be a triangle. Let AD and CE be its internal bisectors, with D lying on BC and E lying on AB. Given that ∠CED=18° and ∠ADE=24°, how can I find angles ∠A and ∠C without aid of softwares? Angle ∠B is easy to calculate, as
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions.
I agree that this seems difficult. The only way I could get at it was to use trigonometry.
[TIKZ][scale=1.75]
\coordinate [label=above:{$A$}] (A) at (-6,0) ;
\coordinate [label=right:{$B$}] (B) at (0,0) ;
\coordinate [label=right:{$C$}] (C) at (0.5,3) ;
\coordinate [label=below:{$E$}] (E) at (-2,0) ;
\coordinate [label=right:{$D$}] (D) at (0.25,1.5) ;
\draw (A) -- (B) -- (C) -- (A) -- (D) -- (E) -- (C) ;
\node at (-5.1,0.1) {$\alpha$} ;
\node at (-5.1,0.3) {$\alpha$} ;
\node at (0.3,2.5) {$\gamma$} ;
\node at (0,2.6) {$\gamma$} ;
\node at (-0.17,0.15) {$96^\circ$} ;
\node at (-0.3,1.25) {$24^\circ$} ;
\node at (-1.4,0.5) {$18^\circ$} ;
[/TIKZ]
Suppose that the angles at $A$ and $C$ are $2\alpha$ and $2\gamma$. By the sine rule in $\triangle ABD$, $$\frac{BD}{\sin\alpha} = \frac{AB}{\sin(\alpha+96^\circ)}.$$

By the sine rule in $\triangle BEC$, $$\frac{BE}{\sin\gamma} = \frac{BC}{\sin(\gamma+96^\circ)}.$$

Using the sine rule in $\triangle BDE$ and then in $\triangle ABC$, it follows that $$\frac{\sin(\alpha+24^\circ)}{\sin(\gamma+18^\circ)} = \frac{BD}{BE} = \frac{AB\sin\alpha \sin(\gamma+96^\circ)}{BC\sin\gamma \sin(\alpha+96^\circ)} = \frac{\sin(2\gamma)\sin\alpha \sin(\gamma+96^\circ)}{\sin(2\alpha)\sin\gamma \sin(\alpha+96^\circ)} = \frac{\cos\gamma\sin(\gamma+96^\circ)}{\cos\alpha \sin(\alpha+96^\circ)}.$$
Therefore $$\sin(\alpha+24^\circ)\cos\alpha \sin(\alpha+96^\circ) = \sin(\gamma+18^\circ) \cos\gamma\sin(\gamma+96^\circ).$$ Since $\alpha + \gamma = 42^\circ$, we can write this as $$\sin(\alpha+24^\circ)\cos\alpha \sin(\alpha+96^\circ) = \sin(60^\circ - \alpha) \cos(42^\circ - \alpha)\sin(138^\circ - \alpha^\circ).$$ In principle, that equation should determine $\alpha$. In practice, it is not so easy. I found that by messing about with sum-to-product trig formulas, I could reduce it to $$\tan\alpha = \frac{2\cos66^\circ - \sin48^\circ}{\cos48^\circ}.$$ To make progress from there, I had to use the geometry of the regular pentagon.

[TIKZ][scale=0.75]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=above right: $N$] (N) at (0,-4.045) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) -- (P) -- (B) -- (D) ;
\draw (C) -- (N) ;
\draw (0.3,1.25) node {$K$} ;
\draw (-3.4,-3.75) node {$72^\circ$} ;
\draw (-0.35,4.3) node {$54^\circ$} ;
\draw (0.4,4.3) node {$54^\circ$} ;
[/TIKZ]

In that diagram, $CN$ and $BP$ are perpendicular to $AE$. If the sides of the pentagon have unit length then $AN = \frac12$. But $AN = BK - PA = \sin54^\circ - \cos72^\circ$. So $$\sin54^\circ - \cos72^\circ = \tfrac12,$$ $$\sin(48^\circ + 6^\circ) = \cos72^\circ + \cos60^\circ = 2\cos6^\circ \cos66^\circ,$$ $$\sin48^\circ\cos6^\circ + \cos48^\circ\sin6^\circ = 2\cos6^\circ \cos66^\circ,$$ $$\cos48^\circ\sin6^\circ = \cos6^\circ(2\cos66^\circ - \sin48^\circ),$$ $$\tan6^\circ = \frac{2\cos66^\circ - \sin48^\circ}{\cos48^\circ}.$$ Therefore $\tan\alpha = \tan6^\circ$, so that $\angle A = 12^\circ$ and $\angle C = 72^\circ$, as forecast by Geogebra.​
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K