MHB Find ∠A & ∠C in Triangle Geometry

  • Thread starter Thread starter Lemoine
  • Start date Start date
  • Tags Tags
    Geometry Triangle
Lemoine
Messages
1
Reaction score
0
Let △ABC be a triangle. Let AD and CE be its internal bisectors, with D lying on BC and E lying on AB. Given that ∠CED=18° and ∠ADE=24°, how can I find angles ∠A and ∠C without aid of softwares? Angle ∠B is easy to calculate, as
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions. A teacher suggested me to drop perpendiculars from E to AD and from D to CE. Let E′ be the reflection of E over AD and D′ be the reflection of D over CE. Both D′ and E′ lie on AC, as AD bisects EE′ and CE bisects DD′.

What I found:
∠CED′=18°
∠ADE′=24°
∠DEE′=∠DE′E=90°−24°=66°
∠EDD′=∠ED′D=90°−18°=72°
∠E′ED′=66°−2⋅18°=30°
∠D′DE′=72°−2⋅24°=24°
 
Mathematics news on Phys.org
Lemoine said:
Let △ABC be a triangle. Let AD and CE be its internal bisectors, with D lying on BC and E lying on AB. Given that ∠CED=18° and ∠ADE=24°, how can I find angles ∠A and ∠C without aid of softwares? Angle ∠B is easy to calculate, as
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions.
I agree that this seems difficult. The only way I could get at it was to use trigonometry.
[TIKZ][scale=1.75]
\coordinate [label=above:{$A$}] (A) at (-6,0) ;
\coordinate [label=right:{$B$}] (B) at (0,0) ;
\coordinate [label=right:{$C$}] (C) at (0.5,3) ;
\coordinate [label=below:{$E$}] (E) at (-2,0) ;
\coordinate [label=right:{$D$}] (D) at (0.25,1.5) ;
\draw (A) -- (B) -- (C) -- (A) -- (D) -- (E) -- (C) ;
\node at (-5.1,0.1) {$\alpha$} ;
\node at (-5.1,0.3) {$\alpha$} ;
\node at (0.3,2.5) {$\gamma$} ;
\node at (0,2.6) {$\gamma$} ;
\node at (-0.17,0.15) {$96^\circ$} ;
\node at (-0.3,1.25) {$24^\circ$} ;
\node at (-1.4,0.5) {$18^\circ$} ;
[/TIKZ]
Suppose that the angles at $A$ and $C$ are $2\alpha$ and $2\gamma$. By the sine rule in $\triangle ABD$, $$\frac{BD}{\sin\alpha} = \frac{AB}{\sin(\alpha+96^\circ)}.$$

By the sine rule in $\triangle BEC$, $$\frac{BE}{\sin\gamma} = \frac{BC}{\sin(\gamma+96^\circ)}.$$

Using the sine rule in $\triangle BDE$ and then in $\triangle ABC$, it follows that $$\frac{\sin(\alpha+24^\circ)}{\sin(\gamma+18^\circ)} = \frac{BD}{BE} = \frac{AB\sin\alpha \sin(\gamma+96^\circ)}{BC\sin\gamma \sin(\alpha+96^\circ)} = \frac{\sin(2\gamma)\sin\alpha \sin(\gamma+96^\circ)}{\sin(2\alpha)\sin\gamma \sin(\alpha+96^\circ)} = \frac{\cos\gamma\sin(\gamma+96^\circ)}{\cos\alpha \sin(\alpha+96^\circ)}.$$
Therefore $$\sin(\alpha+24^\circ)\cos\alpha \sin(\alpha+96^\circ) = \sin(\gamma+18^\circ) \cos\gamma\sin(\gamma+96^\circ).$$ Since $\alpha + \gamma = 42^\circ$, we can write this as $$\sin(\alpha+24^\circ)\cos\alpha \sin(\alpha+96^\circ) = \sin(60^\circ - \alpha) \cos(42^\circ - \alpha)\sin(138^\circ - \alpha^\circ).$$ In principle, that equation should determine $\alpha$. In practice, it is not so easy. I found that by messing about with sum-to-product trig formulas, I could reduce it to $$\tan\alpha = \frac{2\cos66^\circ - \sin48^\circ}{\cos48^\circ}.$$ To make progress from there, I had to use the geometry of the regular pentagon.

[TIKZ][scale=0.75]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=above right: $N$] (N) at (0,-4.045) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) -- (P) -- (B) -- (D) ;
\draw (C) -- (N) ;
\draw (0.3,1.25) node {$K$} ;
\draw (-3.4,-3.75) node {$72^\circ$} ;
\draw (-0.35,4.3) node {$54^\circ$} ;
\draw (0.4,4.3) node {$54^\circ$} ;
[/TIKZ]

In that diagram, $CN$ and $BP$ are perpendicular to $AE$. If the sides of the pentagon have unit length then $AN = \frac12$. But $AN = BK - PA = \sin54^\circ - \cos72^\circ$. So $$\sin54^\circ - \cos72^\circ = \tfrac12,$$ $$\sin(48^\circ + 6^\circ) = \cos72^\circ + \cos60^\circ = 2\cos6^\circ \cos66^\circ,$$ $$\sin48^\circ\cos6^\circ + \cos48^\circ\sin6^\circ = 2\cos6^\circ \cos66^\circ,$$ $$\cos48^\circ\sin6^\circ = \cos6^\circ(2\cos66^\circ - \sin48^\circ),$$ $$\tan6^\circ = \frac{2\cos66^\circ - \sin48^\circ}{\cos48^\circ}.$$ Therefore $\tan\alpha = \tan6^\circ$, so that $\angle A = 12^\circ$ and $\angle C = 72^\circ$, as forecast by Geogebra.​
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top