Find a subset of the real numbers

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Numbers Real numbers
Click For Summary
SUMMARY

This discussion focuses on finding an open and dense subset of the real numbers with arbitrarily small measure using rational numbers. The proposed subset is defined as $$A_n= \left ( q_n-\frac{\epsilon}{2^{n+2}}, q_n+\frac{\epsilon}{2^{n+2}} \right )$$, where $\{q_n\}_{n=1}^\infty$ represents an enumeration of the rationals. By adjusting the measure calculation, it is established that the total measure of the set $A$ can be made less than $\epsilon$, confirming its open and dense nature.

PREREQUISITES
  • Understanding of open and dense sets in topology
  • Familiarity with measure theory concepts
  • Knowledge of rational numbers and their enumeration
  • Basic calculus for handling limits and sums
NEXT STEPS
  • Study the properties of open and dense sets in real analysis
  • Explore measure theory, focusing on Lebesgue measure
  • Learn about enumerations and bijections in set theory
  • Investigate the implications of using rational numbers in topology
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in advanced topics in topology and measure theory will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to find an open and dense subset of the real numbers with arbitrarily small measure.

Since the set of the rational numbers is dense, could we use a subset of the rationals?? (Wondering)

How could I find such a subset, that the measure is arbitrarily small?? (Wondering)
 
Physics news on Phys.org
Could I take the subset $$A_n= \left ( q_n-\frac{\epsilon}{2}, q_n+\frac{\epsilon}{2} \right ), \epsilon>0$$ ?? (Wondering)

Then $A= \cup_n A_n$.

$$\mu(A)=\mu \left ( \cup_n A_n \right ) \leq \sum_n \mu (A_n)=\sum_n \mu \left ( \left ( q_n-\frac{\epsilon}{2}, q_n+\frac{\epsilon}{2} \right ) \right )=\sum_n \epsilon$$
 
mathmari said:
Could I take the subset $$A_n= \left ( q_n-\frac{\epsilon}{2}, q_n+\frac{\epsilon}{2} \right ), \epsilon>0$$ ?? (Wondering)

Then $A= \cup_n A_n$.

$$\mu(A)=\mu \left ( \cup_n A_n \right ) \leq \sum_n \mu (A_n)=\sum_n \mu \left ( \left ( q_n-\frac{\epsilon}{2}, q_n+\frac{\epsilon}{2} \right ) \right )=\sum_n \epsilon$$

Is $\{q_n\}_{n=1}^\infty$ an enumeration of the rationals? If so, then you are on the right track. You should change the $\epsilon/2$ in your $A_n$ to $\epsilon/2^{n+2}$. Then your $A$ is open and dense, with $\mu(A) < \epsilon$.
 
Euge said:
Is $\{q_n\}_{n=1}^\infty$ an enumeration of the rationals?

What do you mean by "an enumeration of rationals"?? (Wondering)

Euge said:
You should change the $\epsilon/2$ in your $A_n$ to $\epsilon/2^{n+2}$. Then your $A$ is open and dense, with $\mu(A) < \epsilon$.

Yes, you're right! (Yes)

By changing the $\epsilon/2$ to $\epsilon/2^{n+2}$ we get the sum $$\sum_n \frac{\epsilon}{2^{n+1}}=\frac{\epsilon}{2} \sum_n \left ( \frac{1}{2} \right )^n=\frac{\epsilon}{2}2=\epsilon$$ (Mmm)
 
mathmari said:
What do you mean by "an enumeration of rationals"?? (Wondering)
It means that the map $f : \Bbb N \to \Bbb Q$ given by $f(n) = q_n$ for all $n\in \Bbb N$, is a bijection.

mathmari said:
By changing the $\epsilon/2$ to $\epsilon/2^{n+2}$ we get the sum $$\sum_n \frac{\epsilon}{2^{n+1}}=\frac{\epsilon}{2} \sum_n \left ( \frac{1}{2} \right )^n=\frac{\epsilon}{2}2=\epsilon$$ (Mmm)

You're very close, but since we're summing over all $n\ge 1$,

$$\sum_n \frac{\epsilon}{2^{n+1}} = \frac{\epsilon}{2} < \epsilon.$$
 
Euge said:
It means that the map $f : \Bbb N \to \Bbb Q$ given by $f(n) = q_n$ for all $n\in \Bbb N$, is a bijection.

I understand!

So, do I have to mention it before I take this subset?? (Wondering)
Euge said:
You're very close, but since we're summing over all $n\ge 1$,

$$\sum_n \frac{\epsilon}{2^{n+1}} = \frac{\epsilon}{2} < \epsilon.$$

Oh, I see! (flower)
 
mathmari said:
I understand!

So, do I have to mention it before I take this subset?? (Wondering)

You just need to mention in the beginning that $\{q_n\}$ is an enumeration of the rationals.
 
Euge said:
You just need to mention in the beginning that $\{q_n\}$ is an enumeration of the rationals.

Ok! Thanks a lot! (Happy)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K