Find all points with same distance to (A) and (B)

  • Thread starter Thread starter reedy
  • Start date Start date
  • Tags Tags
    Points
Click For Summary
To find all points equidistant from points A=(-1,2,3) and B=(3,4,-3), the discussion emphasizes deriving the equation of a plane that serves as the perpendicular bisector in three-dimensional space. The midpoint C of the segment connecting A and B is calculated as C=(A+B)/2, which simplifies to (1,3,0). The normal vector for the plane is derived from the line connecting A and B, yielding the equation 2x1 + x2 - 3x3 = 5. The participants agree that both the brute force method and using the midpoint approach are valid, with a preference for the latter due to its simplicity. Understanding the geometric relationships is key to solving the problem effectively.
reedy
Messages
37
Reaction score
0
I have two given points.

A=(-1,2,3) and B=(3,4,-3).

I want to find all points (x1,x2,x3) that have the same distance to A and B.

Attempt:

I think finding the line they both lie on is a good first step. To do this, I've drawn a vector between A and B, and found the line's equation. L=(3,4,-3)+t(2,1,-3). I've come to the conclusion that I have to find a perpendicular bisector of some sort. And I guess cross product won't work, cause I only have one line(?). What is the next step?
 
Physics news on Phys.org
A perpendicular bisector would be appropriate in two dimensions, but in three dimensions we are looking for a plane with normal L.

We can find it by bruteforce:
(x,y,z) is
\sqrt{(x+1)^2+(y-2)^2+(z-3)^2}
from A and
\sqrt{(x-3)^2+(y-4)^2+(z+3)^2}
from B so you're looking for all triples (x,y,z) such that:
\sqrt{(x+1)^2+(y-2)^2+(z-3)^2} = \sqrt{(x-3)^2+(y-4)^2+(z+3)^2}
Square, expand and cancel a bit and you should get the equation of a plane that describes all points equally far from A and B.

You could also have noted that C=(A+B)/2 is equally far from A and B, so you want to find the plane with point C and normal CA. From analytic geometry you should be able to find this plane (the same as before), but in my opinion this is more complicated than bruteforce.
 
rasmhop said:
A perpendicular bisector would be appropriate in two dimensions, but in three dimensions we are looking for a plane with normal L.

Of course! What was I thinking...

But if that is true, which it is, wouldn't it be easier to just use the fact that
[PLAIN said:
http://en.wikipedia.org/wiki/Normal_vector]For[/PLAIN] a plane given by the equation ax + by + cz = d, the vector (a,b,c) is a normal.

and pull out the normal from L's equation, (2,1,-3), and establish that the plane's equation is 2x1+x2-3x3?

If so, I would need a right hand side as well. And the only point I know for sure in the plane is C.

You say that C=(A+B)/2. Why is that? Is it plain ol' division on each coordinate? (-1,2,3)+(3,4,-3)=(2,6,0) // division // (1,3,0)

Gives me: 2x1+x2-3x3=5 which is a correct answer according to the textbook. But the last step confused me.
 
Last edited by a moderator:
reedy said:
and pull out the normal from L's equation, (2,1,-3), and establish that the plane's equation is 2x1+x2-3x3?
Yes it would be possible, and what you find easiest is up to you. Neither is particularly complicated.

You say that C=(A+B)/2. Why is that? Is it plain ol' division on each coordinate? (-1,2,3)+(3,4,-3)=(2,6,0) // division // (1,3,0)
Yes. We use (A+B)/2 because that is the mid-point of the line segment connecting A and B. For one way of seeing this consider the vector AB. Adding half of this to A we get half-way to B from A so:
C = A + 1/2 * AB = A + 1/2(B-A) = 1/2(A+B)
 
rasmhop said:
C = A + 1/2 * AB = A + 1/2(B-A) = 1/2(A+B)
Ahh, perfect. Now I see it - thanks a bunch!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K