MHB Find all Possible Values of f(3) from f(1)=10, f(5)=206

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
Given a polynomial function with non-negative integer coefficients,
if f(1)=10,f(5)=206, find all the possible values of f(3) =?
 
Mathematics news on Phys.org
Albert said:
Given a polynomial function with non-negative integer coefficients,
if f(1)=10,f(5)=206, find all the possible values of f(3) =?


The polynomial can be maximum a cubic polynomial because $5^3 < 206$ and $5^4 = 625 > 206$
polynomial is not constant polynomial because $f(1)$ and $f(5)$ are not same
now let us consider linear quadatic and cubic polynomials
case 1
linear Let $f(x) = ax+b$
$f(1) = a + b = 6$ and $5a + b = 206$ gives $a = 40$ and $b= - 1$ invalid solution ( does not meet criteria)
case 2
now consider qudartic
$f(x) = ax^2+bx+c$
$f(1) = 10 => a + b+ c = 10\cdots(1)$
$f(5) = 206=> 25a + 5b+ c= 206\cdots(2)$
subtracting (1) from (2) we get $24a+4b= 196$ or $6a + b = 49$ giving solution $a = 8, b= 1$ in the range so we have from(1)
$c=1$

$f(x) = 8x^2+x + 1$ and f(3) = 76
this is one value
case 3)
now consider cubic
$f(x) = ax^3+ bx^2 + cx+d$ and a cannot be $>1$ as $f(5)$ becomes greater than 249
so $a=1$
we have
$f(x) = x^3 + bx^2+ cx + d$
$f(1) = 1 + b + c + d = 10$ or $b+c+d = 9\cdots(1)$
$f(5) = 125 + 25b + 5c + d = 206$ or $25b+5c +d = 81\cdots(2)$
subtract (1) from (2) to get
$24b+4c= 72$ or $6b+c = 18$ giving $b = 2,c = 6$ (which gives d = 1 from (1)) or $b=3,c = 0$ which gives $d=6$
giving 2 sets solutions
$f(x) = x^3 + 2x^2 + 6x + 1$ giving $f(3) = 64$
and
$f(x) = x^3 + 3x^2 + 1$ giving $f(3) = 60$

so we have 3 possible values for $f(3)$ 60, 64, 76
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top