MHB Find all Possible Values of f(3) from f(1)=10, f(5)=206

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
Given a polynomial function with non-negative integer coefficients,
if f(1)=10,f(5)=206, find all the possible values of f(3) =?
 
Mathematics news on Phys.org
Albert said:
Given a polynomial function with non-negative integer coefficients,
if f(1)=10,f(5)=206, find all the possible values of f(3) =?


The polynomial can be maximum a cubic polynomial because $5^3 < 206$ and $5^4 = 625 > 206$
polynomial is not constant polynomial because $f(1)$ and $f(5)$ are not same
now let us consider linear quadatic and cubic polynomials
case 1
linear Let $f(x) = ax+b$
$f(1) = a + b = 6$ and $5a + b = 206$ gives $a = 40$ and $b= - 1$ invalid solution ( does not meet criteria)
case 2
now consider qudartic
$f(x) = ax^2+bx+c$
$f(1) = 10 => a + b+ c = 10\cdots(1)$
$f(5) = 206=> 25a + 5b+ c= 206\cdots(2)$
subtracting (1) from (2) we get $24a+4b= 196$ or $6a + b = 49$ giving solution $a = 8, b= 1$ in the range so we have from(1)
$c=1$

$f(x) = 8x^2+x + 1$ and f(3) = 76
this is one value
case 3)
now consider cubic
$f(x) = ax^3+ bx^2 + cx+d$ and a cannot be $>1$ as $f(5)$ becomes greater than 249
so $a=1$
we have
$f(x) = x^3 + bx^2+ cx + d$
$f(1) = 1 + b + c + d = 10$ or $b+c+d = 9\cdots(1)$
$f(5) = 125 + 25b + 5c + d = 206$ or $25b+5c +d = 81\cdots(2)$
subtract (1) from (2) to get
$24b+4c= 72$ or $6b+c = 18$ giving $b = 2,c = 6$ (which gives d = 1 from (1)) or $b=3,c = 0$ which gives $d=6$
giving 2 sets solutions
$f(x) = x^3 + 2x^2 + 6x + 1$ giving $f(3) = 64$
and
$f(x) = x^3 + 3x^2 + 1$ giving $f(3) = 60$

so we have 3 possible values for $f(3)$ 60, 64, 76
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top