MHB Find all the solutions of the equation

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The equation 3^x + 4^x = 5^x can be transformed into the form f(x) = (3/5)^x + (4/5)^x - 1. It is established that the derivative f'(x) is negative for all x, indicating that f(x) is a decreasing function and thus has at most one solution. The solution is found to be x = 2, which satisfies the original equation. The discussion also touches on the lack of an analytical method for solving such equations, suggesting familiarity with basic Pythagorean triples may help. Overall, the key takeaway is that x = 2 is the unique solution to the equation.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to find all the solutions of the equation
$$3^x+4^x=5^x$$

I have done the following:
$$3^x+4^x=5^x \Rightarrow (\frac{3}{5})^x+(\frac{4}{5})^x=1$$
$$f(x)=(\frac{3}{5})^x+(\frac{4}{5})^2-1 \Rightarrow f'(x)=(\frac{3}{5})^x \ln{(\frac{3}{5})}+(\frac{4}{5})^2 \ln{(\frac{4}{5})}$$

Is it true that $f'(x)<0, \forall x \in \mathbb{R}$?? (Wondering)

If so, we would know that $f(x)$ has at most one solution.

How could I continue?? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Hey! :o

I have to find all the solutions of the equation
$$3^x+4^x=5^x$$

I have done the following:
$$3^x+4^x=5^x \Rightarrow (\frac{3}{5})^x+(\frac{4}{5})^2=1$$
$$f(x)=(\frac{3}{5})^x+(\frac{4}{5})^2-1 \Rightarrow f'(x)=(\frac{3}{5})^x \ln{(\frac{3}{5})}+(\frac{4}{5})^2 \ln{(\frac{4}{5})}$$

Is it true that $f'(x)<0, \forall x \in \mathbb{R}$?? (Wondering)

If so, we would know that $f(x)$ has at most one solution.

How could I continue?? (Wondering)

Your idea is good but the correct procedure is to write...

$\displaystyle f(x) = (\frac{3}{5})^{x} + (\frac{4}{5})^{x} = 1\ (1)$

Because $\displaystyle f^{\ '} (x) < 0$ for all x , the equation has only one solution and it is easy o see that this solution is x=2...Kind regards

$\chi$ $\sigma$
 
chisigma said:
Your idea is good but the correct procedure is to write...

$\displaystyle f(x) = (\frac{3}{5})^{x} + (\frac{4}{5})^{x} = 1\ (1)$

Because $\displaystyle f^{\ '} (x) < 0$ for all x , the equation has only one solution and it is easy o see that this solution is x=2...Kind regards

$\chi$ $\sigma$

Do we know that $\displaystyle f^{\ '} (x) < 0$ for all x, because of the fact the $\ln{y}$ is negative in this case, and $y^x$>0, $y=\frac{3}{5},\frac{4}{5}$? (Wondering)
 
mathmari said:
Do we know that $\displaystyle f^{\ '} (x) < 0$ for all x, because of the fact the $\ln{y}$ is negative in this case, and $y^x$>0, $y=\frac{3}{5},\frac{4}{5}$? (Wondering)

$\displaystyle \begin{align*} f(x) &= \left( \frac{3}{5} \right) ^x + \left( \frac{4}{5} \right) ^x - 1 \\ \\ f'(x) &= \left( \frac{3}{5} \right) ^x \ln{ \left( \frac{3}{5} \right) } + \left( \frac{4}{5} \right) ^x \ln{ \left( \frac{4}{5} \right) } \end{align*}$

Since $\displaystyle \begin{align*} \left( \frac{3}{5} \right) ^x \end{align*}$ and $\displaystyle \begin{align*} \left( \frac{4}{5} \right) ^x \end{align*}$ are both always positive, and $\displaystyle \begin{align*} \ln{ \left( \frac{3}{5} \right) } \end{align*}$ and $\displaystyle \begin{align*} \ln{ \left( \frac{4}{5} \right) } \end{align*}$ are both negative, we can conclude that the derivative is always negative.
 
mathmari said:
Do we know that $\displaystyle f^{\ '} (x) < 0$ for all x, because of the fact the $\ln{y}$ is negative in this case, and $y^x$>0, $y=\frac{3}{5},\frac{4}{5}$? (Wondering)

Is...

$\displaystyle f(x) = e^{x\ \ln \frac{3}{5}} + e^{x\ \ln \frac{4}{5}} \implies f^{\ '} (x) = \ln \frac{3}{5}\ e^{x\ \ln \frac{3}{5}} + \ln \frac{4}{5}\ e^{x\ \ln \frac{4}{5}}\ (1)$

... and because $\displaystyle \ln \frac{3}{5}$ and $\displaystyle \ln \frac{4}{5}$ are both negative, the $\displaystyle f^{\ '} (x)$ is also negative...

Kind regards$\chi$ $\sigma$
 
Prove It said:
$\displaystyle \begin{align*} f(x) &= \left( \frac{3}{5} \right) ^x + \left( \frac{4}{5} \right) ^x - 1 \\ \\ f'(x) &= \left( \frac{3}{5} \right) ^x \ln{ \left( \frac{3}{5} \right) } + \left( \frac{4}{5} \right) ^x \ln{ \left( \frac{4}{5} \right) } \end{align*}$

Since $\displaystyle \begin{align*} \left( \frac{3}{5} \right) ^x \end{align*}$ and $\displaystyle \begin{align*} \left( \frac{4}{5} \right) ^x \end{align*}$ are both always positive, and $\displaystyle \begin{align*} \ln{ \left( \frac{3}{5} \right) } \end{align*}$ and $\displaystyle \begin{align*} \ln{ \left( \frac{4}{5} \right) } \end{align*}$ are both negative, we can conclude that the derivative is always negative.

chisigma said:
Is...

$\displaystyle f(x) = e^{x\ \ln \frac{3}{5}} + e^{x\ \ln \frac{4}{5}} \implies f^{\ '} (x) = \ln \frac{3}{5}\ e^{x\ \ln \frac{3}{5}} + \ln \frac{4}{5}\ e^{x\ \ln \frac{4}{5}}\ (1)$

... and because $\displaystyle \ln \frac{3}{5}$ and $\displaystyle \ln \frac{4}{5}$ are both negative, the $\displaystyle f^{\ '} (x)$ is also negative...

Kind regards$\chi$ $\sigma$

Great! Thank you both! (Happy)

To find that $x=2$ is the solution, is there a method? Or do we have to check diverses $x$ and then we see that $x=2$ satisfies the relation?
 
mathmari said:
Great! Thank you both! (Happy)

To find that $x=2$ is the solution, is there a method? Or do we have to check diverses $x$ and then we see that $x=2$ satisfies the relation?

I can't think of a method to solve this type of equation analytically. But you should know some basic Pythagorean Triples...
 
Prove It said:
I can't think of a method to solve this type of equation analytically. But you should know some basic Pythagorean Triples...

Ok...Thanks! (Smile)
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K