Find all x such that |x-1|+|x-2|>1.

  • Thread starter Thread starter Saladsamurai
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the inequality |x-1| + |x-2| > 1. The solution involves analyzing four cases based on the definitions of absolute values. Case 1 concludes that x > 2, while Case 2 leads to x < 2 but fails for x = 1. Cases 3 and 4 yield nonsensical results, indicating that they can be disregarded. The final conclusion is that the solution set is x > 2, confirmed by the graphical behavior of the function f(x) = |x-1| + |x-2|.

PREREQUISITES
  • Understanding of absolute value functions
  • Basic algebraic manipulation skills
  • Familiarity with piecewise functions
  • Graphing techniques for analyzing functions
NEXT STEPS
  • Study the properties of absolute value functions
  • Learn how to solve inequalities involving piecewise functions
  • Explore graphical methods for analyzing inequalities
  • Investigate the behavior of functions with multiple critical points
USEFUL FOR

Students studying algebra, particularly those tackling inequalities and absolute value functions, as well as educators looking for teaching strategies in these topics.

Saladsamurai
Messages
3,009
Reaction score
7

Homework Statement



Find all x such that ##|x-1|+|x-2|>1##.

Homework Equations



Definition of absolute value:
|x| = x if x ≥ 0.
|x| = -x if x ≤ 0.

The Attempt at a Solution



I figured the most straightforward way if to do this case-wise:

Case 1: ##(x-1)>0 \wedge (x-2)>0## then

##(x-1) + (x-2) > 1 \implies x > 2.##


Case 2: ##(x-1)<0 \wedge (x-2)<0## then

## (1-x) + (2-x) > 1 \implies x<2.##


Case 3: ##(x-1)>0 \wedge (x-2)<0## then

## (x-1)+(1-x) > 1 \implies 0 >1. ##


Case 4: ##(x-1)<0 \wedge (x-2)>0## then

## (1-x) + (x+2) > 1 \implies 3 > 1. ##


Cases 3 and 4 are bothering me because x 'drops out.' Case 3 makes no sense and has me wondering if Case 4 even makes sense.
 
Physics news on Phys.org
Case 1 looks right to me. Plugging 2 in you get |2-1|+|2-2|>1 ==> 1+0>1 so x has to be at least bigger than 2.
 
Yeah. I don't really understand what is going on with the other cases. Even case 2 fails if you plug in x = 1. I thought I needed to evaluate all cases and then take what is common between them?
 
Saladsamurai said:
Yeah. I don't really understand what is going on with the other cases. Even case 2 fails if you plug in x = 1. I thought I needed to evaluate all cases and then take what is common between them?

You need to intersect your assumptions with the solution. Take case 2. You've assumed x<1 AND x<2 AND you have concluded x<2. Of course, x=1 doesn't need to work. It violates your assumption that x<1.
 
Last edited:
Dick said:
You need to intersect your assumptions with the solution. Take case 2. You've assumed x<1 AND x<2 AND you have concluded x<2. Of course, x=1 doesn't work. It violates your assumption that x<1.

Oof. Ok, I see that one now. Now what about case 3 and 4? Do they actually give me any useful information? I guess I need to take a second look here and do what you said.

Case 3 I assumed ##(x-1 > 0) \wedge (x-2 < 0)## which translates to ## x>1 \wedge x<2##. So this means that I am only looking at numbers on the interval (1,2). So does the fact that I got a 'nonsense' answer of 0>1 mean that there are no numbers on the interval (1,2) that satisfy the inequality?

And as for case 4, it seems I have assumed that ##x < 1 \wedge x>2## which is nonsense from the start! So it means that I need not consider this case (because it is not even a case!). Correct?
 
Saladsamurai said:
Oof. Ok, I see that one now. Now what about case 3 and 4? Do they actually give me any useful information? I guess I need to take a second look here and do what you said.

Case 3 I assumed ##(x-1 > 0) \wedge (x-2 < 0)## which translates to ## x>1 \wedge x<2##. So this means that I am only looking at numbers on the interval (1,2). So does the fact that I got a 'nonsense' answer of 0>1 mean that there are no numbers on the interval (1,2) that satisfy the inequality?

That's exactly what it means.
 
Dick said:
That's exactly what it means.

Don't know if you saw the edit about case 4, but I think I got it right. Thanks again Dick! I know you're sick of seeing my posts, but I promise there are plenty more to come. :smile: High school drop-outs turned engineers need to relearn math right sometimes :biggrin:
 
Saladsamurai said:
Don't know if you saw the edit about case 4, but I think I got it right. Thanks again Dick! I know you're sick of seeing my posts, but I promise there are plenty more to come. :smile: High school drop-outs turned engineers need to relearn math right sometimes :biggrin:

When I'm sick of hearing from you I'll stop answering your posts. Until then, you are fine. And yes, you are correct that some of the cases are nonsense. Just throw them away.
 
Saladsamurai said:

Homework Statement



Find all x such that ##|x-1|+|x-2|>1##.

Homework Equations



Definition of absolute value:
|x| = x if x ≥ 0.
|x| = -x if x ≤ 0.

The Attempt at a Solution



I figured the most straightforward way if to do this case-wise:

Case 1: ##(x-1)>0 \wedge (x-2)>0## then

##(x-1) + (x-2) > 1 \implies x > 2.##


Case 2: ##(x-1)<0 \wedge (x-2)<0## then

## (1-x) + (2-x) > 1 \implies x<2.##


Case 3: ##(x-1)>0 \wedge (x-2)<0## then

## (x-1)+(1-x) > 1 \implies 0 >1. ##


Case 4: ##(x-1)<0 \wedge (x-2)>0## then

## (1-x) + (x+2) > 1 \implies 3 > 1. ##


Cases 3 and 4 are bothering me because x 'drops out.' Case 3 makes no sense and has me wondering if Case 4 even makes sense.

You may gain more insight by plotting the function f(x) = |x-1| + |x-2|. Think of adding the graph of y = |x-1| to the graph of y = |x-2|. Look in detail: when x is to the left of 1, both graphs have slope -1, so the combined graph has slope -2. For x between 1 and 2, one graph has slope -1 and the other has slope +1, so the combined slope = 0 (that is, f(x) is constant for 1 < x < 2). To the right of x = 2, both graphs have slope +1, so the combined graph has slope +2.

RGV
 

Similar threads

Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
4K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K