MHB Find cos(x) and sin(x) if angle x has these properties....

  • Thread starter Thread starter Sirmeris1
  • Start date Start date
  • Tags Tags
    Angle Properties
Sirmeris1
Messages
1
Reaction score
0
Find cos(z) and sin(z) if z is an angle in quadrant III (in standard position) and the terminal side of angle z is parallel to the line 3x+4y=12.

I just want to make sure I'm thinking about this correctly:

The definition of an angle in standard position is that the vertex is at (0,0) and the the x-axis is one end of the angle. Now, I'm thinking that the line with which the terminal side coincides MUST contain the point (0,0) because the terminal side of an angle must be connected to it's vertex and by definition the vertex of this angle is at (0,0). My problem lies with the fact that if the angle is in quadrant III (which if I remember correctly is the bottom left corner of the Cartesian plane) then the terminal side must also be in quadrant III and the line that contains that terminal side must be parallel to 3x+4y=12 and must contain the point (0,0). But this is impossible, because if a line has the point (0,0) that is parallel to 3x+4y=12 will have the slope -(3/4), from which we get that the line that contains the terminal side is just y=-(3/4)x, but this line doesn't contain any points in quadrant III (because when x is negative y is positive and thus in quadrant II). Therefore, angle z CANNOT have a terminal side in quadrant III parallel to the line 3x+4y=12 because there exists no parallel line to 3x+4y=12 that contains the point (0,0) that also contains points in quadrant III.

So I'm getting that this question is impossible. Is my reasoning flawed here? Am I missing something? Attached is my graph where the solid line is the given line and the line is the theoretical parallel line. Thank you in advance for any clarifications.

View attachment 7022
 

Attachments

  • 20504163_1520778697985392_171892792_n.jpg
    20504163_1520778697985392_171892792_n.jpg
    14 KB · Views: 116
Mathematics news on Phys.org
Hello and welcome to MHB, Sirmeris! (Wave)

I agree with your reasoning, and your conclusion. (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top