MHB Find cos(x) and sin(x) if angle x has these properties....

  • Thread starter Thread starter Sirmeris1
  • Start date Start date
  • Tags Tags
    Angle Properties
AI Thread Summary
An angle z in standard position with its terminal side in quadrant III cannot be parallel to the line 3x + 4y = 12, as any parallel line through the origin would have a slope of -3/4, which does not allow for points in quadrant III. The definition of an angle in standard position requires the terminal side to connect to the vertex at (0,0), but the slope of the parallel line leads to contradictions regarding quadrant placement. Therefore, it is concluded that such an angle cannot exist under the given conditions. The reasoning presented is sound, confirming the impossibility of the scenario. The discussion effectively highlights the geometric constraints involved in the problem.
Sirmeris1
Messages
1
Reaction score
0
Find cos(z) and sin(z) if z is an angle in quadrant III (in standard position) and the terminal side of angle z is parallel to the line 3x+4y=12.

I just want to make sure I'm thinking about this correctly:

The definition of an angle in standard position is that the vertex is at (0,0) and the the x-axis is one end of the angle. Now, I'm thinking that the line with which the terminal side coincides MUST contain the point (0,0) because the terminal side of an angle must be connected to it's vertex and by definition the vertex of this angle is at (0,0). My problem lies with the fact that if the angle is in quadrant III (which if I remember correctly is the bottom left corner of the Cartesian plane) then the terminal side must also be in quadrant III and the line that contains that terminal side must be parallel to 3x+4y=12 and must contain the point (0,0). But this is impossible, because if a line has the point (0,0) that is parallel to 3x+4y=12 will have the slope -(3/4), from which we get that the line that contains the terminal side is just y=-(3/4)x, but this line doesn't contain any points in quadrant III (because when x is negative y is positive and thus in quadrant II). Therefore, angle z CANNOT have a terminal side in quadrant III parallel to the line 3x+4y=12 because there exists no parallel line to 3x+4y=12 that contains the point (0,0) that also contains points in quadrant III.

So I'm getting that this question is impossible. Is my reasoning flawed here? Am I missing something? Attached is my graph where the solid line is the given line and the line is the theoretical parallel line. Thank you in advance for any clarifications.

View attachment 7022
 

Attachments

  • 20504163_1520778697985392_171892792_n.jpg
    20504163_1520778697985392_171892792_n.jpg
    14 KB · Views: 119
Mathematics news on Phys.org
Hello and welcome to MHB, Sirmeris! (Wave)

I agree with your reasoning, and your conclusion. (Yes)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top