MHB Find Counterexample for Expression about Limit of Composition Function

Click For Summary
The discussion centers on the validity of a mathematical statement regarding limits of composition functions. A counterexample is sought to demonstrate that the original statement is false when using the domain U \ {L} for function h, particularly if h is not continuous at L. The importance of continuity is emphasized, as discontinuities can lead to different limit values depending on the direction of approach. Modifications to the original statement are proposed to ensure continuity at the relevant points, suggesting that if g is continuous at L, then the limit of the composition holds true. The necessity for a to not be an isolated point in the open set A is also highlighted, as it affects the evaluation of limits and continuity.
i_a_n
Messages
78
Reaction score
0
Suppose that $U$ is open in $\mathbb{R}^{m}$, that $L\in U$ and that $h:U\setminus \left \{ L \right \}\rightarrow \mathbb{R}^{p}$ for some $p\in N$. If $L=\lim_{x\rightarrow a}g(x)$ and $M=\lim_{y\rightarrow L}h(y)$. Then
$\lim_{x\rightarrow a}(h\circ g)(x)=M$.

(Someone told me that this statement is false and should replace "$U\setminus \left \{ L \right \}$" with "$U$", and “$M=\lim_{y\rightarrow L}h(y)$. Then”
with “$h$ is continuous at $L$, then”.)So can you give me a counterexample of the original statement? Thanks.
 
Physics news on Phys.org
What is the domain and range of g(x)?
 
jakncoke said:
What is the domain and range of g(x)?

Let $a\in \mathbb{R}^{n}$, let $V$ be an open set which contains $a$, and suppose that $g: \ V\setminus a\rightarrow \mathbb{R}^{m}$.
 
Last edited:
ianchenmu said:
Let $a\in \mathbb{R}^{n}$, let $V$ be an open set which contains $a$, and suppose that $f: \ V\setminus a\rightarrow \mathbb{R}^{m}$.
The domain of h is U \ L, so can i assume that $\mathbb{R}^{m}$ was a typo and $f: \ V\setminus a\rightarrow$ U \ L ?
 
jakncoke said:
The domain of h is U \ L, so can i assume that $\mathbb{R}^{m}$ was a typo and $f: \ V\setminus a\rightarrow$ U \ L ?
I'm sorry, it's $g$.

Let $a\in \mathbb{R}^{n}$, let $V$ be an open set which contains $a$, and suppose that $g: \ V\setminus a\rightarrow \mathbb{R}^{m}$.
 
First of all the continuity is a must, for if

$
f(x) = \begin{array}{cc} \{ & \begin{array}{cc} -1 & x < 0 \\ 1 & x \geq 0 \end{array} \end{array} $

then $lim_{n \to \infty} \frac{1}{n} \to 1$ and $lim_{n \to \infty} - \frac{1}{n} \to -1$ ($n \in \mathbb{N}$)
f(x) is not continuous at x = 0.

so if you evaluate f(g(x)), $g(x) \in dom(F) $, then if $lim_{x \to a} g(x) \to 0$, then
$lim_{x \to a} f(g(x))$ could be either -1 or 1 (Depending on from which point (left or right) g(x) is heading towards a).

Which brings me to my next point, to verify continuity at a point $a$, you have to be able to evaluate it, namely it should be in the domain of f. if you remove it from the domain of f, like when you said $U-\{L\}$, then f(g(x)) $lim_{x \to a} f(g(x))$ g(x) is heading towards an undefined point, since $g(x) \to L$, how could you check continuity at an undefined point? Namely the definition of continuity is (f is continuous at a point a in its domain) if $lim_{x \to a} f(x) = f(a)$, where x can approach from any direction. if f(L) is not defined then how can we check continuity?

Your statement holds true if modified as follows
Let U be an open subset of $\mathbb{R}^{p}$, and g: U $\to \mathbb{R}^{m}$ and g is continuous at point $L \in U$
and let A be an open subet of $\mathbb{R}^{w}$, and h: A - {a} $ \to U$.
and assume $lim_{x \to a} h(x) = L$, and $lim_{y \to L} g(y) = M$, then it certainly holds that $lim_{x \to a} g(h(x)) = M$.

I also probably need to add the fact that a is not an isolated point of open set A. (can you tell me why?)
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K