MHB Find Cubic Function & Polynomial of Degree 3

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Function
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find a polynomial of degree 3 with real coefficients such that each of its roots is equal to the square of one root of the polynomial $P(x)=x^3+9x^2+9x+9$.
 
Mathematics news on Phys.org
Because the square of the roots shall be roots of the required polynomial so we must have $\sqrt x$ as roots of P(X)
So $(\sqrt x)^3 + 9 x + 9 (\sqrt x) + 9 = 0$
Or $(\sqrt x)(x + 9) = - 9(x+1)$
Or squaring $x(x+9)^2 = 81(x+1)^2$
Or $x(x^2 + 18 x + 81) = 81 x^2 + 162x + 81$
Or $x^3 - 63x^2 - 81 x - 81 = 0$
This is the required equation
 
anemone said:
Find a polynomial of degree 3 with real coefficients such that each of its roots is equal to the square of one root of the polynomial $P(x)=x^3+9x^2+9x+9$.
Does the above mean that if a,b,c are the 3 roots of the above polynomial then the the roots of the new polynomial must be $a^2 ,b^2 , c^2$ ??
 
kaliprasad said:
Because the square of the roots shall be roots of the required polynomial so we must have $\sqrt x$ as roots of P(X)
So $(\sqrt x)^3 + 9 x + 9 (\sqrt x) + 9 = 0$
Or $(\sqrt x)(x + 9) = - 9(x+1)$
Or squaring $x(x+9)^2 = 81(x+1)^2$
Or $x(x^2 + 18 x + 81) = 81 x^2 + 162x + 81$
Or $x^3 - 63x^2 - 81 x - 81 = 0$
This is the required equation

[sp]kaliprasand must we not have also $ -\sqrt x$ .Anyway i did this problem in a different way and i got the same answer [/sp]
 
solakis said:
[sp]kaliprasand must we not have also $ -\sqrt x$ .Anyway i did this problem in a different way and i got the same answer [/sp]

you are right and it is my mistake

as $\sqrt{x}$ is positive by definition so my line should be $\pm \sqrt{x}$ and the we get the same result because of squaring
 
[sp]
Let a,b,c be the roots of P(x) = $x^3+9x^2+9x+9$
And $a^2, b^2 ,c^2 $ the roots of P(y)= $y^3+Ay^2+By+C$
From the polynomial properties we have:
P(x) = $x^3+9x^2+9x+9$=(x-a)(x-b)(x-c) $\Rightarrow$...
.a+b+c=-9...... (1)
ab+ac+bc=9 ...(2)
abc=-9 ......(3)
And also P(y)= $y^3+Ay^2+By+C$=$(y-a^2)(y-b^2)(y-c^2)\Rightarrow $
$a^2+b^2+c^2=-A$..........(4)
$a^2b^2 +a^2c^2+b^2c^2=B$......(5)
$ a^2b^2c^2=-C$............(6)
From(3) we have:$a^2b^2c^2=81$ hence
C=-81.................(7)
From (1) and squaring we get :
$(a+b+c)^2=81\Rightarrow a^2+b^2+c^2= 81-2(ab+ac+bc) $ and using (2) we get :
$a^2+b^2+c^2= 63$ and hence :
A= -63...............(8)
From (2) and squaring we get:
$(ab+ac+bc)^2=81\Rightarrow a^2b^2+a^2c^2+b^2c^2+2(a^2bc+ab^2c+abc^2)=81\Rightarrow
a^2b^2+a^2c^2+b^2c^2+2(a(abc)+b(abc)+c(abc))=81$ and using (3) we have:
$a^2b^2+a^2c^2+b^2c^2 =81-2(-9a-9b-9c)=81+18(a+b+c)$ and using (1) we have:
$a^2b^2+a^2c^2+b^2c^2=81+18(-9)=-81$ hence:
B=-81...............(9)
And P(y)= $y^3+Ay^2+By+C =y^3-63y^2-81y-81$ by using (7),(8),(9)
[/sp]
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top