MHB Find Difference Quotient & Evaluate/Approximate Limits

Click For Summary
To evaluate or approximate limits after finding a difference quotient, algebraic manipulation is often necessary, particularly to cancel out the Δx in the denominator as it approaches zero. The process involves several steps: first, find f(x+h) by substituting x with x+h, then subtract f(x) and simplify. After that, divide by h and factor to reduce the expression. Finally, take the limit as h approaches zero to find the derivative. The example provided demonstrates that the derivative of f(x) = 4 - 2x - x² is f'(x) = -2 - 2x.
Jaclbl
Messages
2
Reaction score
0
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?
 
Mathematics news on Phys.org
Jaclbl said:
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?

Hi Jaclbl,

Welcome to MHB! :)

It would be much better to look at a real problem I think, but in general these limits usually require a cancellation because in the denominator you have a $\Delta x$ and the limit is $\Delta x \rightarrow 0$, so some algebraic manipulation is required to hopefully cancel something out.
 
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2
 
Jaclbl said:
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2

Ok, sounds good. What are $f(x+h)$ and $f(x)$ for this problem?
 
Hello, Jaclbl!

f(x) \:=\:4-2x-x^2

Find: \;\lim_{h\to0}\frac{f(x+h) - f(x)}{h}
I have taught my students to make four steps.

(1) Find f(x+h); replace x with x+h, and simplify.

(2) f(x+h) - f(x): subtract f(x), and simplify.

(3) \frac{f(x+h)-f(x)}{h}: divide by h . . . factor and reduce.

(4) \lim_{h\to0}\frac{f(x+h)-f(x)}{h}: take limit as h\to 0.We are given: \:f(x) \:=\:4 - 2x - x^2

(1)\;f(x+h) \:=\:4-2(x+h) - (x+h)^2 \:=\:4 - 2x - 2h - x^- 2xh - h^2

(2)\;f(x+h)- f(x)
. . . =\: (4-2x-2h - x^2 - 2xh - h^2)-(4-2x-x^2) \:=\:\text{-}2h -2xh - h^2

(3)\;\frac{f(x+h)-f(x)}{h} \;=\;\frac{\text{-}2h-2xh-h^2}{h} \;=\;\frac{h(\text{-}2-2x-h)}{h} \;=\;\text{-}2-2x-h

(4)\;\lim_{h\to0}\frac{f(x+h)-f(x)}{h} \;=\;\lim_{h\to0}(\text{-}2-2x-h) \;=\;\text{-}2-2xTherefore, the derivative of f(x)\:=\:4-2x-x^2 is: \;f'(x) \:=\:-2-2x
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
824
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
727
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K