MHB Find Difference Quotient & Evaluate/Approximate Limits

Jaclbl
Messages
2
Reaction score
0
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?
 
Mathematics news on Phys.org
Jaclbl said:
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?

Hi Jaclbl,

Welcome to MHB! :)

It would be much better to look at a real problem I think, but in general these limits usually require a cancellation because in the denominator you have a $\Delta x$ and the limit is $\Delta x \rightarrow 0$, so some algebraic manipulation is required to hopefully cancel something out.
 
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2
 
Jaclbl said:
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2

Ok, sounds good. What are $f(x+h)$ and $f(x)$ for this problem?
 
Hello, Jaclbl!

f(x) \:=\:4-2x-x^2

Find: \;\lim_{h\to0}\frac{f(x+h) - f(x)}{h}
I have taught my students to make four steps.

(1) Find f(x+h); replace x with x+h, and simplify.

(2) f(x+h) - f(x): subtract f(x), and simplify.

(3) \frac{f(x+h)-f(x)}{h}: divide by h . . . factor and reduce.

(4) \lim_{h\to0}\frac{f(x+h)-f(x)}{h}: take limit as h\to 0.We are given: \:f(x) \:=\:4 - 2x - x^2

(1)\;f(x+h) \:=\:4-2(x+h) - (x+h)^2 \:=\:4 - 2x - 2h - x^- 2xh - h^2

(2)\;f(x+h)- f(x)
. . . =\: (4-2x-2h - x^2 - 2xh - h^2)-(4-2x-x^2) \:=\:\text{-}2h -2xh - h^2

(3)\;\frac{f(x+h)-f(x)}{h} \;=\;\frac{\text{-}2h-2xh-h^2}{h} \;=\;\frac{h(\text{-}2-2x-h)}{h} \;=\;\text{-}2-2x-h

(4)\;\lim_{h\to0}\frac{f(x+h)-f(x)}{h} \;=\;\lim_{h\to0}(\text{-}2-2x-h) \;=\;\text{-}2-2xTherefore, the derivative of f(x)\:=\:4-2x-x^2 is: \;f'(x) \:=\:-2-2x
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
8
Views
3K
Replies
5
Views
535
Replies
3
Views
430
Replies
3
Views
2K
Replies
6
Views
3K
Back
Top