Find Difference Quotient & Evaluate/Approximate Limits

  • Context: MHB 
  • Thread starter Thread starter Jaclbl
  • Start date Start date
  • Tags Tags
    Difference quotient
Click For Summary

Discussion Overview

The discussion revolves around finding the difference quotient and evaluating or approximating limits in the context of calculus. Participants explore the steps involved in this process, particularly focusing on the algebraic manipulations required to handle limits as a variable approaches zero.

Discussion Character

  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • Some participants express uncertainty about whether evaluating limits involves merely plugging in values or if additional algebraic steps are necessary.
  • One participant suggests that limits typically require cancellation of terms in the denominator, specifically when dealing with a $\Delta x$ approaching zero.
  • A participant provides an example limit problem involving the function \( f(x) = 4 - 2x - x^2 \) and outlines a four-step process for finding the limit, including finding \( f(x+h) \), simplifying, and taking the limit as \( h \) approaches zero.
  • Another participant shares the detailed calculations for the limit, leading to a proposed derivative of the function, but this is presented without consensus on the correctness of the steps or results.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to evaluating limits, as there are differing opinions on the necessity of algebraic manipulation versus direct substitution.

Contextual Notes

Some steps in the algebraic manipulation and the assumptions made during the limit evaluation process remain unresolved, particularly regarding the simplifications and the handling of terms as \( h \) approaches zero.

Jaclbl
Messages
2
Reaction score
0
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?
 
Physics news on Phys.org
Jaclbl said:
I understand how to find a difference quotient, but afterwards it asks me to then evaluate or approximate each limit, is that just by plugging in the given limit or is there another step?

Hi Jaclbl,

Welcome to MHB! :)

It would be much better to look at a real problem I think, but in general these limits usually require a cancellation because in the denominator you have a $\Delta x$ and the limit is $\Delta x \rightarrow 0$, so some algebraic manipulation is required to hopefully cancel something out.
 
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2
 
Jaclbl said:
Ah, I don't want to do the exact problem, because it is for homework, but I'll send one of the ones that is like it, for an example.
lim F(x+h)-f(x)
h-0 h

f(x) = 4 - 2x -x2

Ok, sounds good. What are $f(x+h)$ and $f(x)$ for this problem?
 
Hello, Jaclbl!

f(x) \:=\:4-2x-x^2

Find: \;\lim_{h\to0}\frac{f(x+h) - f(x)}{h}
I have taught my students to make four steps.

(1) Find f(x+h); replace x with x+h, and simplify.

(2) f(x+h) - f(x): subtract f(x), and simplify.

(3) \frac{f(x+h)-f(x)}{h}: divide by h . . . factor and reduce.

(4) \lim_{h\to0}\frac{f(x+h)-f(x)}{h}: take limit as h\to 0.We are given: \:f(x) \:=\:4 - 2x - x^2

(1)\;f(x+h) \:=\:4-2(x+h) - (x+h)^2 \:=\:4 - 2x - 2h - x^- 2xh - h^2

(2)\;f(x+h)- f(x)
. . . =\: (4-2x-2h - x^2 - 2xh - h^2)-(4-2x-x^2) \:=\:\text{-}2h -2xh - h^2

(3)\;\frac{f(x+h)-f(x)}{h} \;=\;\frac{\text{-}2h-2xh-h^2}{h} \;=\;\frac{h(\text{-}2-2x-h)}{h} \;=\;\text{-}2-2x-h

(4)\;\lim_{h\to0}\frac{f(x+h)-f(x)}{h} \;=\;\lim_{h\to0}(\text{-}2-2x-h) \;=\;\text{-}2-2xTherefore, the derivative of f(x)\:=\:4-2x-x^2 is: \;f'(x) \:=\:-2-2x
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K