Find f(x,y) given partial derivative and initial condition

Click For Summary
The discussion revolves around finding the function f(x,y) given its partial derivative and an initial condition. The user derives the function as f(x,y) = -x sin y - (1/y) ln |1-xy| + 2 sin y + y^3, confirming its correctness through evaluation. Participants emphasize the importance of checking that both the derived function and its partial derivative match the provided expressions. They note that without the initial condition, multiple solutions could exist, but the condition ensures a unique solution. The conversation highlights the necessity of integration in solving such problems involving partial derivatives.
songoku
Messages
2,497
Reaction score
400
Homework Statement
Please see below
Relevant Equations
Partial derivative

Integration (maybe)
1697703842950.png


My attempt:
$$\frac{\partial f}{\partial x}=-\sin y + \frac{1}{1-xy}$$
$$\int \partial f=\int (-\sin y+\frac{1}{1-xy})\partial x$$
$$f=-x~\sin y-\frac{1}{y} \ln |1-xy|+c$$

Using ##f(0, y)=2 \sin y + y^3##:
$$c=2 \sin y + y^3$$

So:
$$f(x,y)=-x~\sin y-\frac{1}{y} \ln |1-xy|+2 \sin y + y^3$$

Is my answer correct? In the lesson itself, there is no integration when learning partial derivative but I can't think of any other way to solve the question without integration.

Thanks
 
Physics news on Phys.org
Thank you very much Demystifier
 
  • Like
Likes Demystifier
songoku said:
My attempt:
##\frac{\partial f}{\partial x}=-\sin y + \frac{1}{1-xy}##
##\int \partial f=\int (-\sin y+\frac{1}{1-xy})\partial x##
The second line should be written like this:
##\int \frac{\partial f}{\partial x}dx = \int (-\sin y+\frac{1}{1-xy})dx##
 
Mark44 said:
The second line should be written like this:
##\int \frac{\partial f}{\partial x}dx = \int (-\sin y+\frac{1}{1-xy})dx##
Oh ok. Thank you very much Mark44
 
I know it’s obvious and shouldn’t need saying, but just in case...

The final answer is ##f(x,y)=-x~\sin y-\frac{1}{y} \ln |1-xy|+2 \sin y + y^3##.

To check, simply evaluate ##f(0,y)## and ##\frac{\partial f}{\partial x}## to confirm that they match the given expressions.

(I’d guess - not being a mathematician - that there is some theorem which guarantees that the answer for ##f(x,y)## must be unique.)
 
Steve4Physics said:
To check, simply evaluate ##f(0,y)## and ##\frac{\partial f}{\partial x}## to confirm that they match the given expressions.
Good point. This is something that should always be done when solving differential equations.

Steve4Physics said:
(I’d guess - not being a mathematician - that there is some theorem which guarantees that the answer for f(x,y) must be unique.)
If there's a theorem about this, it escapes me at the moment. Without the initial condition, you get a whole family of solutions. The initial condition for f(0, y) nails the family down to a single function.
 
  • Like
Likes songoku and Steve4Physics