Find f(x,y) given partial derivative and initial condition

Click For Summary

Homework Help Overview

The discussion revolves around finding a function f(x,y) given its partial derivative and an initial condition. The subject area involves partial derivatives and integration in the context of multivariable calculus.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the integration of the partial derivative to find the function f(x,y) and question the necessity of integration in this context. There are attempts to clarify the notation used in the integration process.

Discussion Status

Some participants express agreement with the proposed solution, while others emphasize the importance of verifying the solution by checking the initial condition and the partial derivative. The conversation reflects a mix of validation and exploration of the reasoning behind the steps taken.

Contextual Notes

There is mention of a theorem regarding the uniqueness of the solution when an initial condition is provided, alongside discussions about the implications of the initial condition on the family of solutions.

songoku
Messages
2,509
Reaction score
393
Homework Statement
Please see below
Relevant Equations
Partial derivative

Integration (maybe)
1697703842950.png


My attempt:
$$\frac{\partial f}{\partial x}=-\sin y + \frac{1}{1-xy}$$
$$\int \partial f=\int (-\sin y+\frac{1}{1-xy})\partial x$$
$$f=-x~\sin y-\frac{1}{y} \ln |1-xy|+c$$

Using ##f(0, y)=2 \sin y + y^3##:
$$c=2 \sin y + y^3$$

So:
$$f(x,y)=-x~\sin y-\frac{1}{y} \ln |1-xy|+2 \sin y + y^3$$

Is my answer correct? In the lesson itself, there is no integration when learning partial derivative but I can't think of any other way to solve the question without integration.

Thanks
 
Physics news on Phys.org
Thank you very much Demystifier
 
  • Like
Likes   Reactions: Demystifier
songoku said:
My attempt:
##\frac{\partial f}{\partial x}=-\sin y + \frac{1}{1-xy}##
##\int \partial f=\int (-\sin y+\frac{1}{1-xy})\partial x##
The second line should be written like this:
##\int \frac{\partial f}{\partial x}dx = \int (-\sin y+\frac{1}{1-xy})dx##
 
  • Like
Likes   Reactions: songoku
Mark44 said:
The second line should be written like this:
##\int \frac{\partial f}{\partial x}dx = \int (-\sin y+\frac{1}{1-xy})dx##
Oh ok. Thank you very much Mark44
 
I know it’s obvious and shouldn’t need saying, but just in case...

The final answer is ##f(x,y)=-x~\sin y-\frac{1}{y} \ln |1-xy|+2 \sin y + y^3##.

To check, simply evaluate ##f(0,y)## and ##\frac{\partial f}{\partial x}## to confirm that they match the given expressions.

(I’d guess - not being a mathematician - that there is some theorem which guarantees that the answer for ##f(x,y)## must be unique.)
 
  • Like
Likes   Reactions: songoku
Steve4Physics said:
To check, simply evaluate ##f(0,y)## and ##\frac{\partial f}{\partial x}## to confirm that they match the given expressions.
Good point. This is something that should always be done when solving differential equations.

Steve4Physics said:
(I’d guess - not being a mathematician - that there is some theorem which guarantees that the answer for f(x,y) must be unique.)
If there's a theorem about this, it escapes me at the moment. Without the initial condition, you get a whole family of solutions. The initial condition for f(0, y) nails the family down to a single function.
 
  • Like
Likes   Reactions: songoku and Steve4Physics

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K