Find g(x)/h(y) for a given F(x,y)

  • Thread starter Thread starter songoku
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around finding the ratio g(x)/h(y) for a given function F(x,y) expressed in terms of its partial derivatives. The context involves calculus, specifically the application of partial derivatives and implicit relationships between functions.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the relationship between the partial derivatives of F and the functions g(x) and h(y). There is a focus on whether the derived ratio of g(x) to h(y) holds universally or is specific to the chosen forms of g and h. Some participants question the validity of the approach taken by the original poster, suggesting a more algebraic method might be appropriate.

Discussion Status

The discussion is active, with participants providing differing perspectives on the approach to the problem. Some have offered guidance on alternative methods to derive the ratio, while others express agreement on specific points, such as the presence of a negative sign in the ratio.

Contextual Notes

There is an indication that the original poster may have misunderstood the requirements of the problem, as they initially approached it through partial derivatives rather than algebraic manipulation. The discussion highlights the need for clarity in the problem setup and assumptions regarding the functions involved.

songoku
Messages
2,509
Reaction score
393
Homework Statement
Given that ##F(x,y)=f(2x^2 +5y^2)## and satisfies ##h(y) \frac{\partial F}{\partial x}+g(x) \frac{\partial F}{\partial y}=0##, find ##\frac{g(x)}{h(y)}##
Relevant Equations
Partial derivative
$$F(x,y)=f(2x^2+5y^2)$$

$$\frac{\partial F}{\partial x}=f'(2x^2+5y^2) . (4x)$$

$$\frac{\partial F}{\partial y}=f'(2x^2+5y^2).(10y)$$

##f'(2x^2+5y^2)=\frac{\partial F}{\partial x} . \frac{1}{4x} = \frac{\partial F}{\partial y} . \frac{1}{10y}##

So
$$\frac{\partial F}{\partial x} . \frac{1}{4x} = \frac{\partial F}{\partial y} . \frac{1}{10y}$$
$$\frac{\partial F}{\partial x} . 10y=\frac{\partial F}{\partial y} . 4x$$
$$10y . \frac{\partial F}{\partial x}-4x . \frac{\partial F}{\partial y}=0$$

Then
$$\frac{g(x)}{h(y)}=-\frac{4x}{10y}$$

But the answer is ##\frac{4x}{10y}##. Where is my mistake?

Thanks
 
Physics news on Phys.org
I agree with your minus result.
 
  • Like
Likes   Reactions: songoku
I agree with the minus sign. I disagree with your approach. You demonstrated that ##h(y)=10y## and ##g(x)=4x## happen to satisfy the equation, and then computed the ratio of them. But that doesn't really prove that ratio works for any choice of ##g## and##h## that satisfy the equation (of which there are many)

I think what they wanted you to do is simply algebra

##h(y)F_x+g(x)F_y=0##
##g(x)F_y=-h(y)F_x##
##g(x)/h(y)=-F_x/F_y##
 
  • Like
Likes   Reactions: PeroK and songoku
Office_Shredder said:
I agree with the minus sign. I disagree with your approach. You demonstrated that ##h(y)=10y## and ##g(x)=4x## happen to satisfy the equation, and then computed the ratio of them. But that doesn't really prove that ratio works for any choice of ##g## and##h## that satisfy the equation (of which there are many)

I think what they wanted you to do is simply algebra

##h(y)F_x+g(x)F_y=0##
##g(x)F_y=-h(y)F_x##
##g(x)/h(y)=-F_x/F_y##
Ah I see it is possible to start from there. I thought I had to start from partial derivative and tried to rearrange the equation to fit the question.

Thank you very much anuttarasammyak and Office_Shredder
 

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K