Find g(x)/h(y) for a given F(x,y)

  • Thread starter Thread starter songoku
  • Start date Start date
songoku
Messages
2,467
Reaction score
382
Homework Statement
Given that ##F(x,y)=f(2x^2 +5y^2)## and satisfies ##h(y) \frac{\partial F}{\partial x}+g(x) \frac{\partial F}{\partial y}=0##, find ##\frac{g(x)}{h(y)}##
Relevant Equations
Partial derivative
$$F(x,y)=f(2x^2+5y^2)$$

$$\frac{\partial F}{\partial x}=f'(2x^2+5y^2) . (4x)$$

$$\frac{\partial F}{\partial y}=f'(2x^2+5y^2).(10y)$$

##f'(2x^2+5y^2)=\frac{\partial F}{\partial x} . \frac{1}{4x} = \frac{\partial F}{\partial y} . \frac{1}{10y}##

So
$$\frac{\partial F}{\partial x} . \frac{1}{4x} = \frac{\partial F}{\partial y} . \frac{1}{10y}$$
$$\frac{\partial F}{\partial x} . 10y=\frac{\partial F}{\partial y} . 4x$$
$$10y . \frac{\partial F}{\partial x}-4x . \frac{\partial F}{\partial y}=0$$

Then
$$\frac{g(x)}{h(y)}=-\frac{4x}{10y}$$

But the answer is ##\frac{4x}{10y}##. Where is my mistake?

Thanks
 
Physics news on Phys.org
I agree with your minus result.
 
I agree with the minus sign. I disagree with your approach. You demonstrated that ##h(y)=10y## and ##g(x)=4x## happen to satisfy the equation, and then computed the ratio of them. But that doesn't really prove that ratio works for any choice of ##g## and##h## that satisfy the equation (of which there are many)

I think what they wanted you to do is simply algebra

##h(y)F_x+g(x)F_y=0##
##g(x)F_y=-h(y)F_x##
##g(x)/h(y)=-F_x/F_y##
 
  • Like
Likes PeroK and songoku
Office_Shredder said:
I agree with the minus sign. I disagree with your approach. You demonstrated that ##h(y)=10y## and ##g(x)=4x## happen to satisfy the equation, and then computed the ratio of them. But that doesn't really prove that ratio works for any choice of ##g## and##h## that satisfy the equation (of which there are many)

I think what they wanted you to do is simply algebra

##h(y)F_x+g(x)F_y=0##
##g(x)F_y=-h(y)F_x##
##g(x)/h(y)=-F_x/F_y##
Ah I see it is possible to start from there. I thought I had to start from partial derivative and tried to rearrange the equation to fit the question.

Thank you very much anuttarasammyak and Office_Shredder
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top