MHB Find \(H(s)\) for Causal LTI System: Region of Convergence

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Lti System
Dustinsfl
Messages
2,217
Reaction score
5
Determine \(H(s)\) and specify its region of convergence. Your answer should be consistent with the fact that the system is causal and stable.

In order to find \(H(s)\), we need to find \(X(s)\) and \(Y(s)\).
\begin{align*}
x(t) &= Ri + L\frac{di}{dt} + \frac{1}{C}\int i(t)dt\\
X(s) &= \mathcal{L}\bigg\{i + \frac{di}{dt} + \int i(t)dt\bigg\}\\
&= I(s) + sI(s) - I(0) + \frac{1}{s}I(s)\\
&= I(s)\bigg(1 + s + \frac{1}{s}\bigg)\\
y(t) &= \frac{1}{C}\int i(t)dt\\
&= \mathcal{L}\bigg\{\int i(t)dt\bigg\}\\
&= \frac{1}{s}I(s)\\
H(s) &= \frac{\frac{1}{s}}{1 + s + \frac{1}{s}}\\
&= \frac{1}{s^2 + s + 1}
\end{align*}
View attachment 2097

What is a causal system?
For convergece, \(\text{Re} \ \{s\} < -\frac{1}{2}\) since the inverse Laplace of H is
\[
\frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\Big(\frac{\sqrt{3}}{2}t\Big).
\]
 

Attachments

  • Screenshot from 2014-03-11 22:17:34.png
    Screenshot from 2014-03-11 22:17:34.png
    1.8 KB · Views: 86
Mathematics news on Phys.org
So a causal system is when
\[
\lim_{z\to\infty}H(z) < \infty
\]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top