MHB Find Half a Number's Reciprocal Increased by Half its Reciprocal

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Reciprocal
AI Thread Summary
The discussion revolves around solving the equation involving the reciprocal of half a number and half the reciprocal of that number, which equals one-half. The original calculation shows that multiplying every term by 6n simplifies the equation, leading to the conclusion that n equals 5. However, a participant points out that multiplying by 2n is sufficient, yielding the same result of n equaling 5. The conversation highlights different approaches to simplifying the equation while arriving at the same solution. The final consensus confirms that n is indeed 5.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{3.1.2}$
The reciprocal of half a number increased by half the recipical of the number is $\dfrac{1}{2}$
$\begin{array}{rl}
n= & \textit{the number} \\ \\
\dfrac{n}{2}= &\textit{half the number}\\ \\
\dfrac{2}{n} = &\textit{the reciprocal of half the number}\\ \\
\dfrac{1}{2n}= & \textit{half the reciprocal of the number}\\ \\
\dfrac{2}{n}+\dfrac{1}{2n} &=\dfrac{1}{2}\\ \\
&\textit{Multiply every term by 6n to cancel denominators}\\ \\
12+3=15 &=3n\quad\therefore n=5
\end{array}$
hopefully :unsure:
 
Mathematics news on Phys.org
ahhh victory...
 
karush said:
$\tiny{3.1.2}$
The reciprocal of half a number increased by half the recipical of the number is $\dfrac{1}{2}$
$\begin{array}{rl}
n= & \textit{the number} \\ \\
\dfrac{n}{2}= &\textit{half the number}\\ \\
\dfrac{2}{n} = &\textit{the reciprocal of half the number}\\ \\
\dfrac{1}{2n}= & \textit{half the reciprocal of the number}\\ \\
\dfrac{2}{n}+\dfrac{1}{2n} &=\dfrac{1}{2}\\ \\
&\textit{Multiply every term by 6n to cancel denominators}\\ \\
12+3=15 &=3n\quad\therefore n=5
\end{array}$
hopefully :unsure:
Very good. But why "Multiply every term by 6n"? There is no "3" in any of the denominators. Multiplying by 2n is sufficient:
$2n\left(\frac{2}{n}+ \frac{1}{2n}\right)= 2n\left(\frac{1}{2}\right)$
$4+ 1= n$ so $n= 5$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
6
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
2
Views
943
Back
Top