MHB Find Inner Product for Quadratic Form in R^3

Denis99
Messages
6
Reaction score
0
Let $$<x, x>=3x_{1}^2+2x_{2}^2+x_{3}^2-4x_{1}x_{2}-2x_{1}x_{3}+2x_{2}x_{3} $$ be a quadratic form in V=R, where $$x=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}$$ (in the base $${e_{1},e_{2},e_{3}}$$.
Find the inner product corresponding to this quadratic form.

Is this that easy that you have to change '' second'' x-es for y (for example to write $$2x_{2}y_{3}$$ instead of $$2x_{2}x_{3}$$ at the end), or what I have to do?
 
Last edited:
Physics news on Phys.org
Denis99 said:
Let $$<x, x>=3x_{1}^2+2x_{2}^2+x_{3}^2-4x_{1}x_{2}-2x_{1}x_{3}+2x_{2}x_{3} $$ be a quadratic form in V=R, where $$x=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}$$ (in the base $${e_{1},e_{2},e_{3}}$$.
Find the inner product corresponding to this quadratic form.

Is this that easy that you have to change '' second'' x-es for y (for example to write $$2x_{2}y_{3}$$ instead of $$2x_{2}x_{3}$$ at the end), or what I have to do?

what definition do you have to work with here? If it were me I'd iterate to the result-- start by encoding this with standard basis vectors, i.e.

$\langle x, x \rangle =3x_{1}^2+2x_{2}^2+x_{3}^2-4x_{1}x_{2}-2x_{1}x_{3}+2x_{2}x_{3} = \mathbf x^T A \mathbf x$

where $A$ is real symmetric positive definite. Then take the square root of $A$ and let that be your basis i.e. consider
$ A^\frac{1}{2} \mathbf x$
where the $kth$ column of $ A^\frac{1}{2} $ is denoted by $e_k$ in your text
 
steep said:
what definition do you have to work with here? If it were me I'd iterate to the result-- start by encoding this with standard basis vectors, i.e.

$\langle x, x \rangle =3x_{1}^2+2x_{2}^2+x_{3}^2-4x_{1}x_{2}-2x_{1}x_{3}+2x_{2}x_{3} = \mathbf x^T A \mathbf x$

where $A$ is real symmetric positive definite. Then take the square root of $A$ and let that be your basis i.e. consider
$ A^\frac{1}{2} \mathbf x$
where the $kth$ column of $ A^\frac{1}{2} $ is denoted by $e_k$ in your text

I have to work with definition like this one from definition of inner space in here
https://en.m.wikipedia.org/wiki/Inner_product_space
(in part Definition)
 
Denis99 said:
I have to work with definition like this one from definition of inner space in here
https://en.m.wikipedia.org/wiki/Inner_product_space
(in part Definition)

But I can't figure out how you could understand that and say this

Denis99 said:
Find the inner product corresponding to this quadratic form.

Is this that easy that you have to change '' second'' x-es for y (for example to write $$2x_{2}y_{3}$$ instead of $$2x_{2}x_{3}$$ at the end), or what I have to do?

The reality is that one way or another you need to find $A^\frac{1}{2}$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top