MHB Find Length of Arc EF in Triangle ABC

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Arc Length
Click For Summary
In triangle ABC, with angle A measuring 70 degrees and segment BC being 12 units, point O is the midpoint of BC. The circle centered at O with radius BO intersects lines AB and AC at points E and F, forming a right triangle ABF with angle ABF at 20 degrees. Consequently, angle EOF at the center is calculated as 40 degrees. The radius of the circle is determined to be 6 units, leading to the length of arc EF being approximately 4.1888 units. The solution is confirmed as correct and satisfactory.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC$,with $\angle A=70^o,$point $O$ is the midpoint of segment $\overline{BC}=12$
circle $O$(wth center $O$ and radius $\overline{BO})$, meets with $\overline{AB},\overline{AC}$ at points $E$ and $F$ respectively please find the length of arc $EF$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$\triangle ABC$,with $\angle A=70^o,$point $O$ is the midpoint of segment $\overline{BC}=12$
circle $O$(wth center $O$ and radius $\overline{BO})$, meets with $\overline{AB},\overline{AC}$ at points $E$ and $F$ respectively please find the length of arc $EF$
[sp]
In the diagram, the angle $BFC$ is a right angle (angle in a semicircle). So $ABF$ is a right-angled triangle and $\angle ABF = 20^\circ$. Therefore $\angle EOF = 40^\circ$ (angle at centre = twice angle at circumference). If $BC$ is 12 units then the radius of the circle is 6 units, and the arc $EF$ is $2\pi\cdot 6\cdot\frac{40}{360} = \frac43\pi \approx 4.1888$ units.

[/sp]
 

Attachments

  • forty.png
    forty.png
    6 KB · Views: 110
perfect ! very good solution !
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K