MHB Find Length of Side in Right Triangle w/ 45°, 90°, and 45° Angle

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Angle Triangle
AI Thread Summary
In a right triangle ABC with a right angle at A and angle bisector BD, the lengths AB and BC are given as 12 cm and 15 cm, respectively. To find the length of segment AD, the Angle Bisector Theorem is applied, leading to the equation AD/12 = (9 - AD)/15. Solving this equation reveals that AD equals 6 cm. The discussion highlights the importance of understanding the Angle Bisector Theorem, especially for students who have not yet learned trigonometry. This approach provides a foundational method for solving problems involving right triangles and angle bisectors.
Monoxdifly
MHB
Messages
288
Reaction score
0
The triangle ABC is a right triangle with A as the right angle and BD is the bisector of angle B. If AB = 12 cm and BC = 15 cm, the length of AD is ...
A. 3 cm
B. 4 cm
C. 5 cm
D. 6 cm
It was a question for a 9th grader and the book hasn't covered trigonometry by name yet (As in, they don't know about the term sine, cosine, and tangent, but the books do explain the length ratio of triangle which has 45°-90°-45° angle or 30°-60°-90° angle. How to do it and explain it to them?
 

Attachments

  • IMG20191119195818 - Copy.jpg
    IMG20191119195818 - Copy.jpg
    35.9 KB · Views: 110
Mathematics news on Phys.org
Pythagoras $\implies AC = 9$

using the ...

Angle Bisector Theorem

$\dfrac{AD}{AB} = \dfrac{CD}{BC}$

$\dfrac{AD}{12} = \dfrac{9-AD}{15}$

solve for $AD$
 
skeeter said:
Angle Bisector Theorem

$\dfrac{AD}{AB} = \dfrac{CD}{BC}$

Never knew that this theorem exists. Gotta learn how it was derived from now.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top