MHB Find LU-Factorization of A with 1's Along Main Diagonal of L

  • Thread starter Thread starter skoker
  • Start date Start date
skoker
Messages
10
Reaction score
0
find the LU-factorization of $A=\begin{bmatrix} a\ b\ \; \\ c\ d\ \; \end{bmatrix}$ that has 1's along the main diagonal of L.are there restrictions on the matrix A?\( A=\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix} \)

\( U=-\frac{c}{a}r_1+r_2\rightarrow r_2\begin{bmatrix} \;a\ b\ \; \\ \;0\ d-cb\ \; \end{bmatrix}
=\underset{E_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;-\frac{c}{a}\ 1\ \; \end{bmatrix}}.\underset{A}{\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix}} \)

\( L=\underset{E^{-1}_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;\frac{c}{a}\ 1\ \; \end{bmatrix}} \)

\( \therefore A=LU \)

first does this satisfy the the a=lu? also i am not sure the restrictions they are talking about? it seems to have no restrictions.
 
Physics news on Phys.org
The obvious restriction in that factorisation is that you must have $a\ne 0$.
 
that is true. i can not think of any of the matrix properties that would be a restriction with \( abcd \quad n \times n \). A is consistent and invertible. so i would not have any problems i think.
 
Last edited:
In general for $A\in\mathbb{R}^{n\times n}$ invertible we can get the factorization $PA=LU$ were $P$ is a permutation matrix. In our case, if $a=0$ then, $c\neq 0$ and you can choose $P=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}$ .
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top