MHB Find LU-Factorization of A with 1's Along Main Diagonal of L

  • Thread starter Thread starter skoker
  • Start date Start date
skoker
Messages
10
Reaction score
0
find the LU-factorization of $A=\begin{bmatrix} a\ b\ \; \\ c\ d\ \; \end{bmatrix}$ that has 1's along the main diagonal of L.are there restrictions on the matrix A?\( A=\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix} \)

\( U=-\frac{c}{a}r_1+r_2\rightarrow r_2\begin{bmatrix} \;a\ b\ \; \\ \;0\ d-cb\ \; \end{bmatrix}
=\underset{E_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;-\frac{c}{a}\ 1\ \; \end{bmatrix}}.\underset{A}{\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix}} \)

\( L=\underset{E^{-1}_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;\frac{c}{a}\ 1\ \; \end{bmatrix}} \)

\( \therefore A=LU \)

first does this satisfy the the a=lu? also i am not sure the restrictions they are talking about? it seems to have no restrictions.
 
Physics news on Phys.org
The obvious restriction in that factorisation is that you must have $a\ne 0$.
 
that is true. i can not think of any of the matrix properties that would be a restriction with \( abcd \quad n \times n \). A is consistent and invertible. so i would not have any problems i think.
 
Last edited:
In general for $A\in\mathbb{R}^{n\times n}$ invertible we can get the factorization $PA=LU$ were $P$ is a permutation matrix. In our case, if $a=0$ then, $c\neq 0$ and you can choose $P=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}$ .
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
33
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K