MHB Find $m$ in Real Numbers: $x,y\in R$

Albert1
Messages
1,221
Reaction score
0
$x,y\in R$

$if: \sqrt {3x+5y-2-m}+\sqrt {2x+3y-m}=\sqrt {x-200+y}\,\times\sqrt {200-x-y}$

$find:\,m=?$
 
Mathematics news on Phys.org
Albert said:
$x,y\in R$

$if: \sqrt {3x+5y-2-m}+\sqrt {2x+3y-m}=\sqrt {x-200+y}\,\times\sqrt {200-x-y}$

$find:\,m=?$

My solution:

If we let $k=x+y$, we see that the RHS of the given equation, i.e.$\sqrt{x-200+y}\times \sqrt{200-x-y}=\sqrt {(k-200)(200-k)}=\sqrt{-(k-200)^2}$. Since $-(k-200)^2 \le 0$ and we cannot take a square root of a negative number, thus we must have $k=200$, this gives the RHS of the equation as zero.

Thus, each of the term of the LHS must equal to zero and with the relation $k=x+y=200$, we get

$3x+5y-2-m=0$ yields $m=3x+5y-2$

and

$2x+3y-m=0$ yields $m=2x+3y$

Equating these two equations we have $2=x+2y$ or $2=200+y$ which then gives $y=-198$ thus $x=398$.

$\therefore m=2(398)+3(-198)=202$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
6
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
7
Views
3K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top