MHB Find $m$ in Real Numbers: $x,y\in R$

Albert1
Messages
1,221
Reaction score
0
$x,y\in R$

$if: \sqrt {3x+5y-2-m}+\sqrt {2x+3y-m}=\sqrt {x-200+y}\,\times\sqrt {200-x-y}$

$find:\,m=?$
 
Mathematics news on Phys.org
Albert said:
$x,y\in R$

$if: \sqrt {3x+5y-2-m}+\sqrt {2x+3y-m}=\sqrt {x-200+y}\,\times\sqrt {200-x-y}$

$find:\,m=?$

My solution:

If we let $k=x+y$, we see that the RHS of the given equation, i.e.$\sqrt{x-200+y}\times \sqrt{200-x-y}=\sqrt {(k-200)(200-k)}=\sqrt{-(k-200)^2}$. Since $-(k-200)^2 \le 0$ and we cannot take a square root of a negative number, thus we must have $k=200$, this gives the RHS of the equation as zero.

Thus, each of the term of the LHS must equal to zero and with the relation $k=x+y=200$, we get

$3x+5y-2-m=0$ yields $m=3x+5y-2$

and

$2x+3y-m=0$ yields $m=2x+3y$

Equating these two equations we have $2=x+2y$ or $2=200+y$ which then gives $y=-198$ thus $x=398$.

$\therefore m=2(398)+3(-198)=202$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
6
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
7
Views
3K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top