Find magnetic susceptibility using partition function

Click For Summary
The discussion focuses on calculating the magnetic susceptibility of a system with independent molecules at various energy levels. The partition function is derived, leading to the Helmholtz free energy, but there are errors in the initial calculations, particularly in omitting the zero-energy state and the dependence on the magnetic field. A correct approach involves defining the one-particle partition function and accurately differentiating the free energy with respect to the magnetic field. The final expression for magnetic susceptibility is confirmed as χ = lim_{B→0} (μ₀M/B) = (2nμ₀g²μ_B²)/(k_B T(3 + e^{Δ/k_B T})).
cozycoz

Homework Statement


A certain magnetic system contains n independent molecules per unit volume, each of which has four energy levels given by 0, ##Δ-gμ_B B##, ##\Delta##, ##\Delta +gμ_B B##. Write down the partition function, compute Helmholtz function and hence compute the magnetization ##M##. Hence show that the magnetic susceptibility ##χ## is given by χ = \lim_{B\rightarrow 0} {\frac{μ_0 M}{B}} = \frac{2 n μ_0 g^2 {μ_B}^2}{k_B T (3+e^{Δ/k_B T})}

(Sorry I don't know how to type limit in mathematical form)
\lim_{n\rightarrow +\infty} {\frac{\sin(x)}{x}}

Homework Equations


##F=-k_B T \ln Z##, ##m=-(\frac{∂F}{∂B})##, ##m=MV##

The Attempt at a Solution


[/B]
If there are N=Vn molecules, the partition function is Z=(e^{0}+e^{-β(Δ-gμ_B)}+e^{-βΔ}+e^{-β(Δ+gμ_B)})^N.
Then Helmholtz free energy function F is
F=-k_B T[-βΔ+\ln (1+2\cosh {βgμ_B B})]

Now I have to differentiate F by B, but I've noticed βΔ part would be gone because it doesn't have B at all.
My answer is
χ = \frac{2 n μ_0 g^2 {μ_B}^2}{3 k_B T}
where βΔ part is omitted.

If you tell me what's wrong it would be lovely.
 
Physics news on Phys.org
It is unclear how you got ## F ## from ## Z ##. It also isn't apparent how , given the ## F ## that you have presented, that a derivative w.r.t. ## B ## will not be a function of the magnetic field ## B ##, since ## cosh'(x)=sinh(x) ##. Also, in writing out ## Z ##, you left off the ## B ## dependence. You need to be more accurate in presenting it.
 
Your expression for the free energy is incorrect. My best guess is that you forgot about the state with 0 energy when taking the natural log of ##Z##.

Let me show you how I did the problem:

Let ##\zeta## denote the one-particle partition function, i.e.,
$$\begin{eqnarray*}
\zeta &= 1 + e^{-\beta \Delta} (1 + e^{\beta g \mu_B B} + e^{-\beta g \mu_B B}) \\
&= 1 + e^{-\beta \Delta} (1 + 2 \cosh (\beta g \mu_B B))
\end{eqnarray*}$$
Then ##Z = \zeta^N##, so
$$\begin{eqnarray*}
m &= -\frac{\partial}{\partial B} (F) \\
&= \frac{\partial}{\partial B} (kT \ln Z) \\
&= \frac{kTN}{\zeta} \frac{\partial \zeta}{\partial B} \\
&= \frac{(kTN) (2\beta g \mu_B) e^{-\beta \Delta} \sinh(\beta g \mu_B B) }{ 1 + e^{-\beta \Delta} (1 + 2 \cosh (\beta g \mu_B B)) }
\end{eqnarray*}$$
We then have
$$ \chi = \lim_{B \to 0} \frac{\mu_0 m}{VB} = \lim_{B \to 0} \frac{\mu_0}{B} \frac{2ng \mu_B e^{-\beta \Delta} \sinh(\beta g \mu_B B) }{ 1 + e^{-\beta \Delta} (1 + 2 \cosh(\beta g \mu_B B)) } $$
Since we're computing a limit as ##B \to 0##, we need only expand the top and bottom of this fraction to order ##B##. Doing so yields the correct answer.
 
  • Like
Likes Charles Link
VKint said:
Your expression for the free energy is incorrect. My best guess is that you forgot about the state with 0 energy when taking the natural log of ##Z##.

Let me show you how I did the problem:

Let ##\zeta## denote the one-particle partition function, i.e.,
$$\begin{eqnarray*}
\zeta &= 1 + e^{-\beta \Delta} (1 + e^{\beta g \mu_B B} + e^{-\beta g \mu_B B}) \\
&= 1 + e^{-\beta \Delta} (1 + 2 \cosh (\beta g \mu_B B))
\end{eqnarray*}$$
Then ##Z = \zeta^N##, so
$$\begin{eqnarray*}
m &= -\frac{\partial}{\partial B} (F) \\
&= \frac{\partial}{\partial B} (kT \ln Z) \\
&= \frac{kTN}{\zeta} \frac{\partial \zeta}{\partial B} \\
&= \frac{(kTN) (2\beta g \mu_B) e^{-\beta \Delta} \sinh(\beta g \mu_B B) }{ 1 + e^{-\beta \Delta} (1 + 2 \cosh (\beta g \mu_B B)) }
\end{eqnarray*}$$
We then have
$$ \chi = \lim_{B \to 0} \frac{\mu_0 m}{VB} = \lim_{B \to 0} \frac{\mu_0}{B} \frac{2ng \mu_B e^{-\beta \Delta} \sinh(\beta g \mu_B B) }{ 1 + e^{-\beta \Delta} (1 + 2 \cosh(\beta g \mu_B B)) } $$
Since we're computing a limit as ##B \to 0##, we need only expand the top and bottom of this fraction to order ##B##. Doing so yields the correct answer.

Yes i forgot extra 1 taking log..
Thanks a lot
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K