Albert1
- 1,221
- 0
$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$
find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$
find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$
The discussion focuses on finding the minimum value of the expression $\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}$ under the constraints that $a$, $b$, and $c$ are positive real numbers summing to 1. Participants engaged in deriving solutions and confirming the conditions $a>0$, $b>0$, and $c>0$. The problem emphasizes the application of optimization techniques in mathematical analysis.
PREREQUISITESMathematicians, students in advanced calculus, and anyone interested in optimization problems in real analysis.
Albert said:$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$
find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$
Albert said:$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$
find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$