Find Min Value of a+b+c=1: $\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
SUMMARY

The discussion focuses on finding the minimum value of the expression $\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}$ under the constraints that $a$, $b$, and $c$ are positive real numbers summing to 1. Participants engaged in deriving solutions and confirming the conditions $a>0$, $b>0$, and $c>0$. The problem emphasizes the application of optimization techniques in mathematical analysis.

PREREQUISITES
  • Understanding of basic calculus and optimization techniques
  • Familiarity with inequalities, particularly the Cauchy-Schwarz inequality
  • Knowledge of algebraic manipulation and properties of square roots
  • Experience with constraints in optimization problems
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications in optimization
  • Explore methods for solving constrained optimization problems
  • Learn about Lagrange multipliers for handling constraints
  • Investigate geometric interpretations of optimization problems involving distances
USEFUL FOR

Mathematicians, students in advanced calculus, and anyone interested in optimization problems in real analysis.

Albert1
Messages
1,221
Reaction score
0
$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$

find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$
 
Mathematics news on Phys.org
Albert said:
$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$

find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$

My solution:

Note that $2(a^2+b^2)\ge (a+b)^2$ always holds for all real $a$ and $b$.

Therefore we have

$\begin{align*}\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2}&\ge \dfrac{2}{\sqrt{2}}\left(a+b+c\right)\\&\ge \dfrac{2(1)}{\sqrt{2}}\\&\ge \sqrt{2}\end{align*}$

Equality occurs when $a=b=c=\dfrac{1}{3}$.
 
Albert said:
$a>0,b>0,c>0 ,\,\, and \,\, a+b+c=1$

find $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )$

From cyclic symmetry we have $a = b = c = \frac{1}{3}$ is minumum of maximum
giving $min(\sqrt {a^2+b^2}+\sqrt {b^2+c^2}+\sqrt {c^2+a^2} )= \sqrt(2)$
it is minimum because at $(1,0,0)$ it is $2\sqrt(2)$

Note: while I was solving anemone beat me
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K