MHB Find Nearest Integer to $\dfrac{1}{k^3-2009}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $k$ be the largest root of $x^4+1-2009x=0$. Find the nearest integer to $\dfrac{1}{k^3-2009}$.
 
Mathematics news on Phys.org
anemone said:
Let $k$ be the largest root of $x^4+1-2009x=0$. Find the nearest integer to $\dfrac{1}{k^3-2009}$.

x(x^3-2009) = -1

so 1/(x^3-2009) = - x

so we need to find the nearest integer to -x

now largest x is between 12.6 and 12.7(

method to compute x^4 = 2009 x, ignoring 1 and so x^3 = 2009 and then check )

so ans is - 13
 
Well done, kaliprasad!:cool:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top