MHB Find Number b/w 1000-2000: Impossible Sum of Consec. Nums

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Numbers Sum
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find the number between 1000 and 2000 that cannot be expressed as sum of (that is >1) consecutive numbers.( To give example of sum of consecutive numbers

101 = 50 + 51

162 = 53 + 54 + 55 )

and show that it cannot be done
 
Mathematics news on Phys.org
kaliprasad said:
Find the number between 1000 and 2000 that cannot be expressed as sum of (that is >1) consecutive numbers.( To give example of sum of consecutive numbers

101 = 50 + 51

162 = 53 + 54 + 55 )

and show that it cannot be done
[sp]Suppose that $n$ is a multiple of an odd number, say $n = k(2p+1)$. Then $$n = \sum_{r=-p}^p (k+r)$$, so that $n$ is a sum of consecutive integers.

[Note: In that sum, some of the terms may be negative. But if so, those terms will cancel with some of the positive terms, leaving an expression for $n$ as a sum of consecutive positive integers. For example, if $k = 2$ and $p=3$ then $n = k(2p+1) = 14$, and the above formula gives $14 = (-1) + 0 + 1 + 2 + 3 + 4 + 5$. After cancelling the $-1$ with the $+1$, that becomes $14 = 2+3+4+5$.]

So if number cannot be expressed as a sum of that form then it can have no odd divisors at all and must therefore be a power of 2. If the number lies between 1000 and 2000 then it has to be 1024.

To see that a power of 2 cannot be a sum of that form, notice that if such a sum has an odd number of terms, say $2p+1$ terms with the middle term being $k$, then the sum is $k(2p+1)$ (as above) and therefore has an odd factor. If the sum has an even number of terms, say $2k$ terms starting with $m$, then the sum is $$\sum_{r=0}^{2k-1}(m+r) = k(2m+2k-1),$$ which again has an odd factor, $2(m+k)-1.$ Therefore a power of 2 can never be a sum of consecutive integers.[/sp]
 
Opalg said:
[sp]Suppose that $n$ is a multiple of an odd number, say $n = k(2p+1)$. Then $$n = \sum_{r=-p}^p (k+r)$$, so that $n$ is a sum of consecutive integers.

[Note: In that sum, some of the terms may be negative. But if so, those terms will cancel with some of the positive terms, leaving an expression for $n$ as a sum of consecutive positive integers. For example, if $k = 2$ and $p=3$ then $n = k(2p+1) = 14$, and the above formula gives $14 = (-1) + 0 + 1 + 2 + 3 + 4 + 5$. After cancelling the $-1$ with the $+1$, that becomes $14 = 2+3+4+5$.]

So if number cannot be expressed as a sum of that form then it can have no odd divisors at all and must therefore be a power of 2. If the number lies between 1000 and 2000 then it has to be 1024.

To see that a power of 2 cannot be a sum of that form, notice that if such a sum has an odd number of terms, say $2p+1$ terms with the middle term being $k$, then the sum is $k(2p+1)$ (as above) and therefore has an odd factor. If the sum has an even number of terms, say $2k$ terms starting with $m$, then the sum is $$\sum_{r=0}^{2k-1}(m+r) = k(2m+2k-1),$$ which again has an odd factor, $2(m+k)-1.$ Therefore a power of 2 can never be a sum of consecutive integers.[/sp]

Good solution above by opalg.

my solution

for it to be a sum of consecutive numbers it must have an odd factor

Let N be a number that can be represented as a sum of k > 1 consecutive integers, starting with, let's say, a+1, summing the arithmetic progression, we get:
$N = (a+1) + (a+2) + (a+3) + . . + (a+k) = \frac(ka + k(k + 1)){2}$

Hence $2N = 2ka + k(k + 1) = k(2a + k + 1)$
Now if k is odd, N is divisible by k

If k is even, then 2a + k + 1 are odd and again N would have at least one odd factor.>1

Then I need to show that if it has a odd factor > 1 this can be expressed as sum of of consecutive number

2n + 1 = n + (n+1)

Any even number is a power of 2 or can be expressed as power of 2 multiplied by an odd number >1

Say it is $2^p(2n+1)$ where p is highest power of 2 which is a factor.

Now 2n+1 can be written as n+ (n+1) of course n > 1

Now we have 2 cases $2^p \lt n$ or $2^p \gt n$

Case 1) $2^p < n$

This can occur $2^p$ times but there shall be $2^p$ copies of n and $2^p$ copies on n + 1

In the kth copy subtract k-1 from n and add k-1 to n+ 1

So we get the values $n-(2^p-1)$ to $n+ 2^p$

The sum shall be $2^p ( n + 1 +n)$

And all numbers are consecutive ( 1st number >= 1) and positiveCase 2) $2^p > n$

We take 2n+1 copies of $2^p$

From the middle value at a distance of k we subtract k on from the left element and add k on the right element

So we have consecutive numbers $2^p-n$ to $2^p+ n$
Hence for it not to be sum of consecutive numbers it has to be power of 2 that is 1024
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top