MHB Real Number Pairs $(p,\,q)$ Satisfying Inequality

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The discussion focuses on identifying all pairs of real numbers $(p,\,q)$ that satisfy the inequality $|\sqrt{1-x^2}-px-q|\le \dfrac{\sqrt{2}-1}{2}$ for every $x$ in the interval $[0,\,1]$. The analysis reveals that the values of $p$ and $q$ must be constrained to ensure the inequality holds across the specified range of $x$. Specifically, the solution involves determining the bounds for $p$ and $q$ based on the behavior of the function $\sqrt{1-x^2}$ and its linear approximation.

PREREQUISITES
  • Understanding of real number pairs and inequalities
  • Familiarity with the properties of the square root function
  • Knowledge of linear functions and their graphs
  • Basic calculus concepts, particularly limits and continuity
NEXT STEPS
  • Explore the properties of the function $\sqrt{1-x^2}$ and its implications for inequalities
  • Study linear approximations and their applications in bounding functions
  • Investigate methods for solving inequalities involving absolute values
  • Learn about the continuity and differentiability of functions over closed intervals
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in solving inequalities involving real number pairs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all pairs of real numbers $(p,\,q)$ such that the inequality $|\sqrt{1-x^2}-px-q|\le \dfrac{\sqrt{2}-1}{2}$ holds for every $x\in [0,\,1]$.
 
Physics news on Phys.org
Let $f(x) = \sqrt{1-x^2}-(px+q)$ and $\delta_0 = \frac{\sqrt{2}-1}{2} \approx 0,2071$.

With this notation, the given problem reads: $|f(x)| \leq \delta_0, \;\; x \in \left [ 0;1 \right ]$.

As seen from the expression, the problem can be interpreted graphically as a constraint

on the absolute difference between the two functions: $\sqrt{1-x^2}$ and $px + q$.

Note, that the pair $(x,y) = (x, \sqrt{1-x^2})$, for $x \in \left [ 0;1 \right ]$ is the arc of a unit circle in the 1st quadrant of the coordinate system.

Hence, a symmetry argument intuitively suggests $p = -1$ as a solution. Another way to see this, is to use the endpoint constraints:

$x = 0$: $|1-q| \leq \delta_0 \Rightarrow 1-\delta_0 \leq q \leq 1 + \delta_0\;\;\;\;\;(1)$

$x = 1$: $|-p-q| \leq \delta_0\;\;\;\;\;(2)$

Obviously, putting $p = -1$ makes the two conditions identically valid. In addition, we have the function maximum constraint:

$0 < x < 1$: $|\sqrt{1+p^2}-q| \leq \delta_0 \;\;\;\;\;(3)$

The inequality follows from two observations:

(a). $f’’(x) = \frac{-1}{(1-x^2)^{\frac{3}{2}}} \leq 0$ (i.e. $f$ is truly concave on the open interval $]0;1[$, so if an extremum is detected, it must be a maximum).

(b). $ f’(x_0) = 0 \Rightarrow x_0 = -\frac{p}{\sqrt{1+p^2}}$.

Note the minus sign (we know from $(2)$, that $p < 0$). The condition: $|f(x_0)| < \delta_0$ yields $(3)$.

The presumed solution: $p = -1$ also satisfies $(3)$, because:

\[ \left | \sqrt{1+(-1)^2}-q \right | \leq \delta_0 \Rightarrow q \geq \sqrt{2}-\delta_0 = 1+\delta_0 \Rightarrow q = 1+\delta_0\] – which is the upper limit of $q$. We can conclude, that $(p,q) = ( -1, 1+\delta_0) = \left (-1, \frac{\sqrt{2}+1}{2} \right )$ is a solution to the problem.

We need to check for other possibilities:

The conditions $(2)$ and $(3)$ imply:

$-\delta_0 -p \leq q \leq \delta_0 -p \;\;\;\;(2a)$

$\sqrt{1+p^2}-\delta_0 \leq q \leq \sqrt{1+p^2}+\delta_0 \;\;\;\; (3a)$

Note from $(3a)$ and $(1)$, that $p$ is restricted to the interval $-1 \leq p \leq 0$. We can graphically illustrate the set of possible solutions:

p-q boundaries.png


Only $(p,q)$-pairs in the intersection of the yellow and green sets are allowed. Thus only the o-marked corner point at $(-1,1+\delta_0)$, is a valid solution. Indeed, the lower limit in $(3a)$ intersects the upper limit in $(2a)$ in $p = -1$:

\[\sqrt{1+(-1)^2}-\delta_0 = \delta_0 - (-1) \Rightarrow \sqrt{2}-\delta_0 = 1+\delta_0\Rightarrow 2\delta_0 = \sqrt{2}-1 \Rightarrow \delta_0 = \frac{\sqrt{2}-1}{2}\;\;\;\;TRUE\]

We can conclude, that $(p,q) = \left (-1, \frac{\sqrt{2}+1}{2} \right )$ is the only solution.
 
[TIKZ] [scale=5]
\draw (-0.25,0) -- (1.25,0) ;
\draw (0,-0.25) -- (0,1.25) ;
\draw [dashed] (1,0) arc (0:90:1) ;
\draw [thick,green] (1,0.2071) arc (0:90:1) ;
\draw [thick,red] (1,-0.2071) arc (0:90:1) ;
\draw [very thick,dotted] (0,1.2071) -- (1,0.2071) ;[/TIKZ]
The dashed curve is the quadrant $y= \sqrt{1-x^2}$. Raise it by a distance $\frac{\sqrt2-1}2$ to get the green quadrant, and lower it by a distance $\frac{\sqrt2-1}2$ to get the red quadrant. The dotted line is the unique line that can be fitted between the green and red quadrants. It has slope $-1$ and $y$-intercept $\frac{\sqrt2+1}2$, and that gives the values for $p$ and $q$ that lfdahl obtained. But I never got round to writing up the details.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K