without loss of generality we can assume m >=n. if(m,n) is a solution then (n,m) is another
now 4n is even so $m^2 - 4n <= (m-2)^2$
or $-4n<=-4m + 4$
or $n >=m-1$
case 1)
$m=n$
then $m^2 -4m = m(m-4)$ is perfect square = $(k+2)(k-2)$ taking $k = m-2$
$(k+2)(k-2) = k^2 - 4 = p^2(say)$
$(k+p)(k-p) = 4$ so $k+ p = k- p = 2$ as both are even or both odd
so $k = 2, p = 0$ or $m = 4$
so solution $m=n= 4$
case 2)
$n >=m-1$
or $n = m- 1$
now $m^2- 4n = m^2-4(m-1) = (m-2)^2$ always whole square
check the other one
$n^2 - 4m = n^2 - 4(n+1) = n^2 - 4n - 4 = (n-2)^2 + 8 = q^2(say)$
or $(n+2)^2-q^2 = 8$ giving $n-2 + q =4$ and $n-2-q=2$ as both are even
solving $n= 5$ and as $m = n+1$ we have (m,n) = (6,5)
by symmetry (m,n) = (5,6)
combining both we have (m,n) = (6,5) or (5,6) or (4,4)