MHB Find polynomials in S, then find basis for ideal (S)

  • Thread starter Thread starter rapid1
  • Start date Start date
  • Tags Tags
    Basis Polynomials
Click For Summary
The discussion focuses on finding polynomials in the set S, defined as those that are symmetric or antisymmetric in two variables X and Y with rational coefficients. Examples of symmetric polynomials include X + Y and X^2 + XY + Y^2, while the polynomial 3X^2 + 2Y does not belong to S. Participants seek guidance on identifying a finite basis for the ideal generated by S and express difficulty in finding antisymmetric polynomials, with X - Y suggested as a valid example. The conversation highlights the challenge of constructing polynomials that meet the antisymmetry condition. Overall, the thread emphasizes the need for clarification and examples in polynomial ideal theory.
rapid1
Messages
13
Reaction score
0
Hi There,

I posted this question over at MHF to no avail, I'm not really sure what the ruling is on this kind of thing, I know this site was setup when MHF was down for a long time but you seem to still be active and a lot of clever people are still here so hopefully you don't mind taking a look at this for me :)

I have a couple of example questions that I'm trying to get my head around, a bit of guidance would be fabulous.\(S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=f(Y,X) \mbox{ and } \deg(f)\geq 0\}\)1a: Give two polynomials that belong to \(S\).
1b: Find a finite basis of the ideal \((S)\) of \(\mathcal{Q}[X,Y]\) and justify your answer.I then have the question where the questions are the same but based on this
\(S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=-f(Y,X)\}.\)
 
Physics news on Phys.org
rapid said:
Hi There,

I posted this question over at MHF to no avail, I'm not really sure what the ruling is on this kind of thing, I know this site was setup when MHF was down for a long time but you seem to still be active and a lot of clever people are still here so hopefully you don't mind taking a look at this for me :)

I have a couple of example questions that I'm trying to get my head around, a bit of guidance would be fabulous.\(S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=f(Y,X) \mbox{ and } \deg(f)\geq 0\}\)1a: Give two polynomials that belong to \(S\).
Do you understand what Q[X,Y] is? It is the set of all polynomials in variables X and Y with rational coefficients. Examples are X+ Y, 3X^2+ 2Y, and X^2+ XY+ Y^2<br /> To be in S requires that it be symmetric- that is that swapping X and Y does not change the polynomial. X+ Y and X^2+ XY+ Y^2 are in S but 3X^2+ 2Y is not.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> 1b: Find a finite basis of the ideal \((S)\) of \(\mathcal{Q}[X,Y]\) and justify your answer.I then have the question where the questions are the same but based on this<br /> \(S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=-f(Y,X)\}.\) </div> </div> </blockquote>
 
Yeh, I thought that would be the case, thanks for confirming. What about part b however, a finite basis?

Also with the second question where \(f(X,Y)=-f(Y,X)\) I'm honestly struggling to think of any polynomials, other than \(0\), that fit because the minus makes it more tricky.
 
rapid said:
Also with the second question where \(f(X,Y)=-f(Y,X)\) I'm honestly struggling to think of any polynomials, other than \(0\), that fit because the minus makes it more tricky.
How about $X-Y$ ?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
915
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K