Find Real Solutions: Solving $\sqrt{4a-b^2}=\sqrt{b+2}+\sqrt{4a^2+b}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the equation $\sqrt{4a-b^2}=\sqrt{b+2}+\sqrt{4a^2+b}$. Participants explored various approaches to find real solutions for the variables \(a\) and \(b\). The consensus highlights the importance of isolating terms and squaring both sides to eliminate the square roots, leading to a clearer path toward the solution. The collaborative effort resulted in a comprehensive understanding of the problem-solving techniques involved.

PREREQUISITES
  • Understanding of algebraic manipulation and square root properties
  • Familiarity with solving equations involving radicals
  • Knowledge of isolating variables in equations
  • Experience with squaring both sides of an equation to eliminate radicals
NEXT STEPS
  • Study techniques for solving radical equations
  • Learn about isolating variables in complex equations
  • Explore the implications of squaring both sides of an equation
  • Investigate similar algebraic problems involving multiple variables
USEFUL FOR

Students, educators, and anyone interested in advanced algebraic problem-solving techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the real solution(s) to the system

$\sqrt{4a-b^2}=\sqrt{b+2}+\sqrt{4a^2+b}$
 
Mathematics news on Phys.org
My solution:

Squaring and rearranging terms yields:\[4a-b^2 = b+2+4a^2+b + 2\sqrt{(b+2)(4a^2+b)}\\\\ -(b^2+2b+1)-4(a^2-a+\frac{1}{4}) = 2\sqrt{(b+2)(4a^2+b)}\]

- under the conditions:

$4a-b^2 \geq 0 \wedge b \geq -2$ or $a \geq \left ( \frac{b}{2} \right )^2 \wedge b \geq -2$.The LHS $\le 0$:

\[-(b+1)^2-4(a-\frac{1}{2})^2=-\left ( (b+1)^2+4(a-\frac{1}{2})^2 \right ) \le 0\]The RHS $\ge 0$, so the only possibility is: $b = -1$ and $a = \frac{1}{2}$. Checking the RHS: $4a^2+b = 0$. OK.
 
lfdahl said:
My solution:

Squaring and rearranging terms yields:\[4a-b^2 = b+2+4a^2+b + 2\sqrt{(b+2)(4a^2+b)}\\\\ -(b^2+2b+1)-4(a^2-a+\frac{1}{4}) = 2\sqrt{(b+2)(4a^2+b)}\]

- under the conditions:

$4a-b^2 \geq 0 \wedge b \geq -2$ or $a \geq \left ( \frac{b}{2} \right )^2 \wedge b \geq -2$.The LHS $\le 0$:

\[-(b+1)^2-4(a-\frac{1}{2})^2=-\left ( (b+1)^2+4(a-\frac{1}{2})^2 \right ) \le 0\]The RHS $\ge 0$, so the only possibility is: $b = -1$ and $a = \frac{1}{2}$. Checking the RHS: $4a^2+b = 0$. OK.

Very well done, lfdahl and thanks for participating!(Cool)
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K