MHB Find relation equation between a,b

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Relation
AI Thread Summary
The discussion focuses on finding a relationship between the constants a and b in the equations y = x^3 - ax^2 - bx and y = ax + b, where x is a negative integer and y is a positive integer. Participants explore how to derive this relationship and identify pairs of (x, y) that satisfy both equations. The conversation also touches on the co-primality of x^3 and 1+x, with references to Euclid's algorithm for clarification. The primary goal is to establish the conditions under which the equations hold true for the specified integer constraints. Understanding these relationships is crucial for solving the equations effectively.
Albert1
Messages
1,221
Reaction score
0
$y=x^3-ax^2-bx---(1)$
$y=ax+b---(2)$
$a,b\in R$
$x$ is a negative integer, $y$ positive integer
(1) find the relative equation between $a$ and $b$
(2)pair(s) of $(x,y)$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$y=x^3-ax^2-bx---(1)$
$y=ax+b---(2)$
$a,b\in R$
$x$ is a negative integer, $y$ positive integer
(1) find the relative equation between $a$ and $b$
(2)pair(s) of $(x,y)$

we have $y=x^3- ax^2-bx = x^3 - x(ax+b) = x^3-xy$ using (2)
or $y+xy = x^3$
or $y = \frac{x^3}{1+x}$
now $x^3$ and (1+x) are co-primes and 1 + x is not a factor of $x^3$ unless $1+x = \pm 1$
and $1+x=1$ gives x = 0 which is not admissible
so $1+x = -1$ hence $x = -2 $ and $y=8$ so this is the solution as it satisfied x -ve and y + ve
putting in (2) we get
8 = -2a + b or $2a-b = -8$ is the relationship between a and b
 
Last edited:
kaliprasad said:
we have $y=x^3- ax^2-bx = x^3 - x(ax+b) = x^3-xy$ using (2)
or $y+xy = x^3$
or $y = \frac{x^3}{1+x}$
now $x^3$ and (1+x) are co-primes and 1 + x is not a factor of $x^3$ unless $1+x = \pm 1$
and $1+x=1$ gives x = 0 which is not admissible
so $1+x = -1$ hence $x = -2 $ and $y=8$ so this is the solution as it satisfied x -ve and y + ve
putting in (2) we get
8 = -2a + b or $2a-b = 8$ is the relationship between a and b

How do you know $x^3$ and $1+x$ are co-prime?
 
Fermat said:
How do you know $x^3$ and $1+x$ are co-prime?

because $x^3+1 = (x+1)(x^2-x + 1)$

so $x^3 = (x+1)(x^2-x+1) + 1$

so $GCD(x^3, x + 1) = GCD(- 1,x +1) =1$ or -1 if you like it and hence co-primes unless $x +1 = \pm 1$
 
kaliprasad said:
because $x^3+1 = (x+1)(x^2-x + 1)$

so $x^3 = (x+1)(x^2-x+1) + 1$

so $GCD(x^3, x + 1) = GCD(- 1,x +1) =1$ or -1 if you like it and hence co-primes unless $x +1 = \pm 1$

Euclid's algorithm; ok thanks
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top