MHB Find Relative Error of A: 2.33

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Error Relative
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! :rolleyes: I have also an other question :o
Suppose the base $\beta =10$ ,the precision $t=3$, $-L=U=10$ and $$A=(317+0.3)-(171.499+145.501)$$
I have to find the relative error for $A$.
We don't make rounding.For example,if we have the value $345.924$ it is equal to $0.345924*10^3$ and the corresponding floating number is $0.345*10^3$.
I found that it is equal to
$$\frac{||A-fl(A)||}{||A||}=\frac{7}{5}=2.33$$
Could you tell me if it is right?
 
Mathematics news on Phys.org
evinda said:
Hey! :rolleyes: I have also an other question :o
Suppose the base $\beta =10$ ,the precision $t=3$, $-L=U=10$ and $$A=(317+0.3)-(171.499+145.501)$$
I have to find the relative error for $A$.
We don't make rounding.For example,if we have the value $345.924$ it is equal to $0.345924*10^3$ and the corresponding floating number is $0.345*10^3$.
I found that it is equal to
$$\frac{||A-fl(A)||}{||A||}=\frac{7}{5}=2.33$$
Could you tell me if it is right?

I found that A=0.3 and fl(A)=1..
 
evinda said:
I found that A=0.3 and fl(A)=1..

Looks good! ;)... but doesn't that mean that:
$$\frac{||A-fl(A)||}{||A||} = \frac{|0.3 - 1|}{|0.3|} = \frac{0.7}{0.3} = 2.33$$

Oh wait! You also got $2.33$... while you shouldn't have. :eek: :rolleyes:
 
I like Serena said:
Looks good! ;)... but doesn't that mean that:
$$\frac{||A-fl(A)||}{||A||} = \frac{|0.3 - 1|}{|0.3|} = \frac{0.7}{0.3} = 2.33$$

Oh wait! You also got $2.33$... while you shouldn't have. :eek: :rolleyes:

I accidentally wrote $\frac{7}{5}$ :o I meant that it is equal to $\frac{7}{3}$..

Thank you very much! (Mmm)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top