MHB Find Sum of 4 Different Natural Numbers with $(7-m)(7-n)(7-p)(7-q)=4$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation $(7-m)(7-n)(7-p)(7-q)=4$ requires finding four distinct natural numbers \(m, n, p, q\). The factors of 4 can be expressed as products of integers, leading to potential combinations for \(7-m, 7-n, 7-p, 7-q\). By testing combinations of these factors, valid sets of \(m, n, p, q\) can be derived, ensuring they remain distinct and natural. The final goal is to calculate \(7m + 7n + 7p + 7q\) based on the identified values. The solution ultimately reveals the sum in a straightforward manner.
Albert1
Messages
1,221
Reaction score
0
$m,n,p,q\in N$
$m\neq n\neq p\neq q$
and $(7-m)(7-n)(7-p)(7-q)=4$
find:$7m+7n+7p+7q=?$
 
Mathematics news on Phys.org
Albert said:
$m,n,p,q\in N$
$m\neq n\neq p\neq q$
and $(7-m)(7-n)(7-p)(7-q)=4$
find:$7m+7n+7p+7q=?$

let 7-m < 7-n < 7-p < 7- q without loss of generality

product of 4 different numbers is 4 so they are -2,-1, 1 , 2

so 7-m + 7-n + 7- p + 7- q = 0 or m+n+p+q = 28

so 7m + 7n + 7p + 7q = 196
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K