Find tan 15° and cos 72° (using geometry)

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Cos Geometry Tan
Click For Summary

Discussion Overview

The discussion focuses on finding the values of \( \tan 15^\circ \) and \( \cos 72^\circ \) using geometric methods. Participants explore different geometric constructions and reasoning to derive these trigonometric values.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that trigonometry is a branch of geometry, suggesting an inherent connection between the two fields.
  • One participant proposes a geometric construction involving a square and an equilateral triangle to find \( \tan 15^\circ \), concluding that \( \tan 15^\circ = 2 - \sqrt{3} \).
  • Another participant presents a geometric approach using a regular pentagon to derive \( \cos 72^\circ \), leading to the expression \( \cos 72^\circ = \frac{1}{\sqrt{5}+1} \) and further simplifying it to \( \cos 72^\circ = \frac{1}{4}(\sqrt{5}-1) \).
  • Participants note similarities in their geometric solutions, indicating a collaborative exploration of the topic.

Areas of Agreement / Disagreement

There appears to be no explicit consensus on the methods used, as multiple geometric approaches are presented. Participants share their individual constructions without resolving which method is superior or universally accepted.

Contextual Notes

Some assumptions about the geometric configurations and relationships between angles and sides are not fully detailed, which may affect the clarity of the solutions. The discussion does not resolve all mathematical steps involved in the derivations.

Albert1
Messages
1,221
Reaction score
0
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
 
Mathematics news on Phys.org
Albert said:
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)

$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$

and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
 
Prove It said:
$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$

and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
the answer is correct ,can you prove it using "geometry" ?
 
Albert said:
the answer is correct ,can you prove it using "geometry" ?

Trigonometry IS geometry!
 
Albert said:
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)

kindly excuse me as I cannot draw a figure as I am not familiar but my solution is as below(for tan 15) ( I even not using tan 30)

Draw an equilateral triangle ABC side 2 and draw AD perpendiculaor to BC

AB = 2 , BD = 1 and $AD=sqrt{3}$

Now extend BD to E such that BE = AB = 2

join AE
AEB isn isosceles so $\angle AE = 30^\circ$ and $DE = DB + BE = 3$

so $AE = \sqrt{12}$

Extend DE to F such that EF = AE and join AF. So $DF = 3+ \sqrt{12}$

AEF is isosceles

so $\angle AFD = 15^\circ$ and

hence $\tan \, 15^\circ = \frac{AD}{DF}= \frac{\sqrt{3}}{3+\sqrt{12}} =\frac{\sqrt{3}(\sqrt{12}-3)}{12-9}$ = $\frac{6-3\sqrt{3}}{3}=2-\sqrt{3}$
 
[sp]
[TIKZ][scale=3]
\coordinate [label=above left: $A$] (A) at (0,2) ;
\coordinate [label=above right: $B$] (B) at (2,2) ;
\coordinate [label=below right: $C$] (C) at (2,0) ;
\coordinate [label=below left: $D$] (D) at (0,0) ;
\coordinate [label=right: $E$] (E) at (1,1.732) ;
\coordinate [label=above : $F$] (F) at (1,2) ;
\coordinate [label=below : $G$] (G) at (1,0) ;
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (E) ;
\draw (D) -- (E) -- (C) ;
\draw (F) -- (G) ;[/TIKZ]​
In the diagram, $ABCD$ is a square with side $2$, and $CDE$ is an equilateral triangle whose height $EG$ is $\sqrt3$.

In the isosceles triangle $ADE$ the angle at $D$ is $30^\circ$, so the angles at $A$ and $E$ are $75^\circ$. Therefore the angle $EAF$ is $15^\circ$. You can then see from the triangle $AFE$ that $\tan15^\circ = \dfrac{EF}{AF} = \dfrac{FG - EG}{1} = 2-\sqrt3.$[/sp]
Edit: kaliprasad just beat me to it with what looks like a very similar solution.
 
As for evaluating $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } \end{align*}$, we need to look at a regular pentagram.

View attachment 6433

If we have the side lengths as 1 unit long, and if we call the unknown length "x" then in the middle triangle from the cosine rule we can write

$\displaystyle \begin{align*} x^2 &= x^2 + 1^2 - 2\left( x \right) \left( 1 \right) \cos{ \left( 72^{\circ} \right) } \\ 0 &= 1 - 2\,x\cos{ \left( 72^{\circ} \right) } \\ 2\,x \cos{ \left( 72^{\circ} \right) } &= 1 \\ x &= \frac{1}{2\cos{ \left( 72^{\circ} \right) } } \end{align*}$

If we look at the left hand triangle, we can relate the three sides by the cosine rule

$\displaystyle \begin{align*} x^2 &= 1^2 + 1^2 - 2\left( 1 \right) \left( 1 \right) \cos{ \left( 108 ^{\circ} \right) } \\ x^2 &= 2 - 2\cos{ \left( 108^{\circ} \right) } \\ x^2 &= 2 - 2\cos{ \left( 180^{\circ} - 72^{\circ} \right) } \\ x^2 &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ \left[ \frac{1}{2\cos{ \left( 72^{\circ} \right) } } \right] ^2 &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ \frac{1}{4\cos^2{\left( 72^{\circ} \right) } } &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ 1 &= 4\cos^2{ \left( 72^{\circ} \right) } \left[ 2 + 2\cos{ \left( 72^{\circ} \right) } \right] \\ 1 &= 8\cos^2{ \left( 72^{\circ} \right) } + 8\cos^3{ \left( 72^{\circ} \right) } \\ 0 &= 8\cos^3{ \left( 72^{\circ} \right) } + 8\cos^2{ \left( 72^{\circ} \right) } - 1 \end{align*}$

If we let $\displaystyle \begin{align*} y = \cos{ \left( 72^{\circ} \right) } \end{align*}$ then we have the polynomial equation $\displaystyle \begin{align*} 8\,y^3 + 8\,y^2 - 1 &= 0 \end{align*}$.

We can see that $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ is a solution, and so $\displaystyle \begin{align*} \left( 2\,y + 1 \right) \end{align*}$ is a factor. Thus

$\displaystyle \begin{align*} 8\,y^3 + 8\,y^2 - 1 &= 0 \\ 8\,y^3 + 4\,y^2 + 4\,y^2 - 1 &= 0 \\ 8\,y^3 + 4\,y^2 + 4\,y^2 + 2\,y - 2\,y - 1 &= 0 \\ 4\,y^2 \left( 2\,y + 1 \right) + 2\,y \left( 2\,y + 1 \right) - 1 \left( 2\,y + 1 \right) &= 0 \\ \left( 2\,y + 1 \right) \left( 4\,y^2 + 2\,y - 1 \right) &= 0 \end{align*}$

It's pretty obvious that as $\displaystyle \begin{align*} 0 < 72 < 90 \end{align*}$ that $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } > 0 \end{align*}$, so $\displaystyle \begin{align*} -\frac{1}{2} \end{align*}$ can't be the solution, thus

$\displaystyle \begin{align*} 4\,y^2 + 2\,y - 1 &= 0 \\ y &= \frac{-2 \pm \sqrt{2^2 - 4\left( 4 \right) \left( -1 \right) }}{2\left( 4 \right) } \\ y &= \frac{-2 \pm \sqrt{ 20 }}{8} \\ y &= \frac{-2 \pm 2\,\sqrt{5}}{8} \\ y &= \frac{-1 \pm \sqrt{5}}{4} \end{align*}$

Again, as we know $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } > 0 \end{align*}$ that means that $\displaystyle \begin{align*} \frac{-1 - \sqrt{5}}{4} \end{align*}$ can't be the solution, and thus we can say for certain, as it's the only other possible solution to this polynomial equation, that $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$.
 

Attachments

  • pentagram.png
    pentagram.png
    7 KB · Views: 114
Last edited:
$\cos72^\circ$, "using geometry":
[sp]
[TIKZ]\coordinate [label=above: $A$] (A) at (90:3) ;
\coordinate [label=right: $B$] (B) at (18:3) ;
\coordinate [label=below right: $C$] (C) at (306:3) ;
\coordinate [label=below left: $D$] (D) at (234:3) ;
\coordinate [label=left: $E$] (E) at (162:3) ;
\coordinate [label=below: $G$] (G) at (0,-2.43) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- cycle;
\draw (A) -- (C) -- (E) -- (B) -- (D) -- cycle ;
\draw (A) -- (G) ;
\node at (-1.5,-0.5) {$F$} ;
[/TIKZ]​
In the diagram, $ABCDE$ is a regular pentagon with side $2$. Let $d$ be the length of a diagonal such as $AD$.

The quadrilateral $ABCF$ is a rhombus, and so $AF = FC = AB = 2$. Thus the triangle $DFC$ is isosceles. It has the same angles ($36^\circ,72^\circ,72^\circ$) as the triangle $DAC$. Comparing lengths of sides in these two triangles, you see that $\dfrac{DF}{DC} = \dfrac{DC}{DA}$, so that $\dfrac{DF}{2} = \dfrac2d.$

Therefore $d = DA = DF + FA = \dfrac4d + 2$, from which $d^2 - 2d - 4 = 0$. The positive solution of that quadratic is $d = \sqrt5+1$. Hence $\cos72^\circ = \dfrac{DG}{DA} = \dfrac1{\sqrt5+1}$. You can tidy this up by rationalising the denominator, getting $\cos72^\circ = \frac14(\sqrt5-1)$.
[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
7K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K