Albert1
- 1,221
- 0
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
The discussion focuses on finding the values of \( \tan 15^\circ \) and \( \cos 72^\circ \) using geometric methods. Participants explore different geometric constructions and reasoning to derive these trigonometric values.
There appears to be no explicit consensus on the methods used, as multiple geometric approaches are presented. Participants share their individual constructions without resolving which method is superior or universally accepted.
Some assumptions about the geometric configurations and relationships between angles and sides are not fully detailed, which may affect the clarity of the solutions. The discussion does not resolve all mathematical steps involved in the derivations.
Albert said:find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
Prove It said:$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$
and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
Albert said:the answer is correct ,can you prove it using "geometry" ?
Albert said:find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)