MHB Find Tangent Line w/ Definite Integral - Amy's Question

Click For Summary
To find the equation of the tangent line to the function A(x) at x=π/2, where A(x) is defined as the definite integral from x to π/2 of sin(t)/t dt, we first determine that A(π/2) equals 0. The slope of the tangent line is found using the Fundamental Theorem of Calculus, yielding A'(x) = -sin(x)/x, which gives A'(π/2) = -2/π. With the point (π/2, 0) and the slope -2/π, the tangent line's equation is y = -2/π x + 1. This solution provides a clear method for finding tangent lines involving definite integrals.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Finding tangent line with definite integral?

Find the equation of the tangent line to the graph of y=A(x) at x= pi/2, where A(x) is defined for all real x by:

A(x)= (sin t/t)dt on the integral x to pi/2

If you could show me all of the steps to finding this, I would be really happy.

Here is a link to the question:

Finding tangent line with definite integral? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Amy,

We are given the function:

$$A(x)=\int_x^{\frac{\pi}{2}}\frac{\sin(t)}{t}\,dx$$

and we are asked to find the line tangent to this function at the point:

$$\left(\frac{\pi}{2},A\left(\frac{\pi}{2} \right) \right)=\left(\frac{\pi}{2},0 \right)$$

We know $$A\left(\frac{\pi}{2} \right)=0$$ from the property of definite integrals, demonstrated here by use of the anti-derivative form of the FTOC:

$$\int_a^a f(x)\,dx=F(a)-F(a)=0$$

So, we have the point through which the tangent line must pass, now we need the slope. Using the derivative form of the FTOC, we find:

$$A'(x)=\frac{d}{dx}\int_x^{\frac{\pi}{2}}\frac{\sin(t)}{t}\,dx=-\frac{\sin(x)}{x}$$

Hence:

$$A'\left(\frac{\pi}{2} \right)=-\frac{2}{\pi}$$

We now have a point and the slope, so applying the point-slope formula, we find the equation of the tangent line is:

$$y-0=-\frac{2}{\pi}\left(x-\frac{\pi}{2} \right)$$

$$y=-\frac{2}{\pi}x+1$$

Here is a plot of $A(x)$ and the tangent line:

https://www.physicsforums.com/attachments/811._xfImport

To Amy and any other guests viewing this topic, I invite and encourage you to post other calculus questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 

Attachments

  • amy.jpg
    amy.jpg
    11.2 KB · Views: 116
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K