MHB Find Tangent Point of 2 Functions: Mikey's Calculus Help

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Help Please?


Find the point where the graphs of f(x)=x^3-2x and g(x)=0.5x^2-1.5
are tangent to each other; or have a common tangent line.

I'm pretty sure I have to find the derivatives of each and set them equal to each other. Do I then just solve for x? My answer is seems weird. Can you explain how you would go about this problem please?

Thanks.

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Mikey,

If the two given functions are tangent to each other, then the difference between the two functions will have a repeated root:

$$f(x)-g(x)=(x-a)^2(x-b)$$

$$x^3-\frac{1}{2}x^2-2x+\frac{3}{2}=x^3-(2a+b)x^2+\left(a^2+2ab \right)x-a^2b$$

Equating corresponding coefficients, we find:

$$2a+b=\frac{1}{2}$$

$$a^2+2ab=-2$$

$$a^2b=-\frac{3}{2}$$

The third equation implies:

$$b=-\frac{3}{2a^2}$$

Using this, the first equation gives:

$$4a^3-a^2-3=0\implies a=1,\,b=-\frac{3}{2}$$

And so the two functions are tangent to one another at $x=1$. Here is a plot:

View attachment 1527
 

Attachments

  • mikey.jpg
    mikey.jpg
    6.1 KB · Views: 84
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top