MHB Find the angle between 2 vectors w=i+3j, vector v=<5, 2>

Click For Summary
To find the angle between vectors w = i + 3j and v = <5, 2>, first calculate the cosine of the angle using the dot product formula. The cosine can be derived from the formula cos(θ) = (w · v) / (||w|| ||v||). Once the cosine is determined, the sine can be found using the Pythagorean identity sin(θ) = √(1 - cos²(θ)). This method allows for the complete determination of the angle between the two vectors. Understanding both sine and cosine is essential for solving problems involving vector angles.
Elissa89
Messages
52
Reaction score
0
I know how to find the cos(theta) between two vectors but I do not know how to find the sin(theta).

vector w=i+3j

vector v=<5, 2>
 
Mathematics news on Phys.org
Elissa89 said:
I know how to find the cos(theta) between two vectors but I do not know how to find the sin(theta).

vector w=i+3j

vector v=<5, 2>

find the cosine, then use a form of the Pythagorean identity ...

$\sin{t} = \sqrt{1-\cos^2{t}}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K