MHB Find the antiderivative of V(2−x−x^2)/x^2

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative, $F$, of the function $$f(x) = \frac{\sqrt{2-x-x^2}}{x^2}.$$
 
Last edited:
Mathematics news on Phys.org
The answer to this challenge is neither short nor elegant. In addition the solution path is quite winded.
I´m sorry for having posted the challenge, which seemingly doesn´t contain the mathematical beauty, that
can be found in many other challenges (Sadface)Suggested solution:

From $2-x-x^{2} = (2+x)(1-x)$, it seems a good idea to use the substitution $2+x=y^{2}(1-x).$

Hence, we get:

\[ x=\frac{y^{2}-2}{y^{2}+1}\] and \[dx=\frac{6y}{(y^{2}+1)^{2}}\ dy.\]

and \[\sqrt{2-x-x^{2}}= (1-x)y= \frac{3y}{y^{2}+1}.\]

Thus, our integral/antiderivative can be rewritten in terms of $y$ as:

\[F=\int \frac{3y}{y^{2}+1} \cdot \left (\frac{y^{2}+1}{y^{2}-2} \right )^{2} \cdot \frac{6y}{(y^{2}+1)^{2}}\ dy\]

\[F=\int \frac{18y^{2}}{(y^{2}+1)(y^{2}-2)^{2}}\ dy\]

\[F=\int \left[\frac{2y^{2}+8}{(y^{2}-2)^{2}}-\frac{2}{y^{2}+1}\right]\ dy\]

\[F=\int \frac{2y^{2}+8}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

Using the identity: \[\left(\frac{y}{y^{2}-2}\right)'=-\frac{y^{2}+2}{(y^{2}-2)^{2}}.\]

yields

\[F=\int \frac{3y^{2}+6-(y^{2}-2)}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

\[F=3\int \frac{y^{2}+2}{(y^{2}-2)^{2}}\ dy-\int \frac{1}{y^{2}-2}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-\int \frac{1}{(y+\sqrt{2})(y-\sqrt{2})}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\int \left (\frac{1}{y-\sqrt{2}}-\frac{1}{y+\sqrt{2}}\right)\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\ln \left ( \frac{y-\sqrt{2}}{y+\sqrt{2}} \right )-2\arctan y + C\]

Backsubstitution with $y=\sqrt{\frac{2+x}{1-x}}$, yields:

\[F = 2^{-\frac{3}{2}}\ln \left ( \left | \frac{4}{x} - \frac{2^{\frac{3}{2}}\sqrt{-x^2-x+2}}{x} - 1\right | \right )-\frac{\sqrt{-x^2-x+2}}{x}+\arctan\left (\sqrt{ \frac{2+x}{1-x} }\right )+C’\]
 
I had this problem on a list of things to think about when I have some spare time. Having seen the solution, I'm glad I never got round to it. (Shake)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top