MHB Find the antiderivative of V(2−x−x^2)/x^2

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
AI Thread Summary
The discussion focuses on finding the antiderivative of the function f(x) = √(2 - x - x²)/x². Participants express that the solution is complex and lacks elegance, making it less appealing compared to other mathematical challenges. One contributor reflects on their initial interest in the problem but ultimately feels relieved not to have pursued it further. The conversation highlights the challenge's intricate nature and the disappointment in its lack of mathematical beauty. Overall, the thread emphasizes the difficulty and unappealing aspects of this particular antiderivative problem.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative, $F$, of the function $$f(x) = \frac{\sqrt{2-x-x^2}}{x^2}.$$
 
Last edited:
Mathematics news on Phys.org
The answer to this challenge is neither short nor elegant. In addition the solution path is quite winded.
I´m sorry for having posted the challenge, which seemingly doesn´t contain the mathematical beauty, that
can be found in many other challenges (Sadface)Suggested solution:

From $2-x-x^{2} = (2+x)(1-x)$, it seems a good idea to use the substitution $2+x=y^{2}(1-x).$

Hence, we get:

\[ x=\frac{y^{2}-2}{y^{2}+1}\] and \[dx=\frac{6y}{(y^{2}+1)^{2}}\ dy.\]

and \[\sqrt{2-x-x^{2}}= (1-x)y= \frac{3y}{y^{2}+1}.\]

Thus, our integral/antiderivative can be rewritten in terms of $y$ as:

\[F=\int \frac{3y}{y^{2}+1} \cdot \left (\frac{y^{2}+1}{y^{2}-2} \right )^{2} \cdot \frac{6y}{(y^{2}+1)^{2}}\ dy\]

\[F=\int \frac{18y^{2}}{(y^{2}+1)(y^{2}-2)^{2}}\ dy\]

\[F=\int \left[\frac{2y^{2}+8}{(y^{2}-2)^{2}}-\frac{2}{y^{2}+1}\right]\ dy\]

\[F=\int \frac{2y^{2}+8}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

Using the identity: \[\left(\frac{y}{y^{2}-2}\right)'=-\frac{y^{2}+2}{(y^{2}-2)^{2}}.\]

yields

\[F=\int \frac{3y^{2}+6-(y^{2}-2)}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

\[F=3\int \frac{y^{2}+2}{(y^{2}-2)^{2}}\ dy-\int \frac{1}{y^{2}-2}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-\int \frac{1}{(y+\sqrt{2})(y-\sqrt{2})}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\int \left (\frac{1}{y-\sqrt{2}}-\frac{1}{y+\sqrt{2}}\right)\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\ln \left ( \frac{y-\sqrt{2}}{y+\sqrt{2}} \right )-2\arctan y + C\]

Backsubstitution with $y=\sqrt{\frac{2+x}{1-x}}$, yields:

\[F = 2^{-\frac{3}{2}}\ln \left ( \left | \frac{4}{x} - \frac{2^{\frac{3}{2}}\sqrt{-x^2-x+2}}{x} - 1\right | \right )-\frac{\sqrt{-x^2-x+2}}{x}+\arctan\left (\sqrt{ \frac{2+x}{1-x} }\right )+C’\]
 
I had this problem on a list of things to think about when I have some spare time. Having seen the solution, I'm glad I never got round to it. (Shake)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top