MHB Find the antiderivative of V(2−x−x^2)/x^2

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary
The discussion focuses on finding the antiderivative of the function f(x) = √(2 - x - x²)/x². Participants express that the solution is complex and lacks elegance, making it less appealing compared to other mathematical challenges. One contributor reflects on their initial interest in the problem but ultimately feels relieved not to have pursued it further. The conversation highlights the challenge's intricate nature and the disappointment in its lack of mathematical beauty. Overall, the thread emphasizes the difficulty and unappealing aspects of this particular antiderivative problem.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative, $F$, of the function $$f(x) = \frac{\sqrt{2-x-x^2}}{x^2}.$$
 
Last edited:
Mathematics news on Phys.org
The answer to this challenge is neither short nor elegant. In addition the solution path is quite winded.
I´m sorry for having posted the challenge, which seemingly doesn´t contain the mathematical beauty, that
can be found in many other challenges (Sadface)Suggested solution:

From $2-x-x^{2} = (2+x)(1-x)$, it seems a good idea to use the substitution $2+x=y^{2}(1-x).$

Hence, we get:

\[ x=\frac{y^{2}-2}{y^{2}+1}\] and \[dx=\frac{6y}{(y^{2}+1)^{2}}\ dy.\]

and \[\sqrt{2-x-x^{2}}= (1-x)y= \frac{3y}{y^{2}+1}.\]

Thus, our integral/antiderivative can be rewritten in terms of $y$ as:

\[F=\int \frac{3y}{y^{2}+1} \cdot \left (\frac{y^{2}+1}{y^{2}-2} \right )^{2} \cdot \frac{6y}{(y^{2}+1)^{2}}\ dy\]

\[F=\int \frac{18y^{2}}{(y^{2}+1)(y^{2}-2)^{2}}\ dy\]

\[F=\int \left[\frac{2y^{2}+8}{(y^{2}-2)^{2}}-\frac{2}{y^{2}+1}\right]\ dy\]

\[F=\int \frac{2y^{2}+8}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

Using the identity: \[\left(\frac{y}{y^{2}-2}\right)'=-\frac{y^{2}+2}{(y^{2}-2)^{2}}.\]

yields

\[F=\int \frac{3y^{2}+6-(y^{2}-2)}{(y^{2}-2)^{2}}\ dy-2\arctan y\]

\[F=3\int \frac{y^{2}+2}{(y^{2}-2)^{2}}\ dy-\int \frac{1}{y^{2}-2}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-\int \frac{1}{(y+\sqrt{2})(y-\sqrt{2})}\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\int \left (\frac{1}{y-\sqrt{2}}-\frac{1}{y+\sqrt{2}}\right)\ dy-2\arctan y\]

\[F=-\frac{3y}{y^{2}-2}-2^{-\frac{3}{2}}\ln \left ( \frac{y-\sqrt{2}}{y+\sqrt{2}} \right )-2\arctan y + C\]

Backsubstitution with $y=\sqrt{\frac{2+x}{1-x}}$, yields:

\[F = 2^{-\frac{3}{2}}\ln \left ( \left | \frac{4}{x} - \frac{2^{\frac{3}{2}}\sqrt{-x^2-x+2}}{x} - 1\right | \right )-\frac{\sqrt{-x^2-x+2}}{x}+\arctan\left (\sqrt{ \frac{2+x}{1-x} }\right )+C’\]
 
I had this problem on a list of things to think about when I have some spare time. Having seen the solution, I'm glad I never got round to it. (Shake)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
16
Views
860
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K