MHB Find the area of sector in a circle in terms of pi. (Geometry)

Etrujillo
Messages
9
Reaction score
0
View attachment 8699

So far i have 270/360× (pi)r^ i don't know what to do next please help.
 

Attachments

  • 20181204_093323-2.jpg
    20181204_093323-2.jpg
    6.4 KB · Views: 114
Last edited by a moderator:
Mathematics news on Phys.org
I would first reduce:

$$\frac{270^{\circ}}{360^{\circ}}=\frac{3}{4}$$

And so we now have the area \(A\):

$$A=\frac{3}{4}\pi r^2$$

Can you identify the radius \(r\) of the circle from the diagram?
 
The radius i believe is 12m so when i plug in your formula i get 108pi as the answer. Am i correct?
 
Yes, 108\pi is correct.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top