Find the coefficient of x^{21} without calculating the product

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Coefficient Product
Click For Summary

Discussion Overview

The discussion revolves around finding the coefficient of \(x^{21}\) in the product of two polynomials \(f(x)\) and \(g(x)\) without explicitly calculating the product. Participants explore the relationships between the coefficients of the polynomials and the modular conditions that must be satisfied.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant proposes a method to find the coefficient \(c_{21}\) by identifying pairs of coefficients \(a_i\) and \(b_j\) such that \(i + j = 21\).
  • Another participant points out that the conditions can be simplified to \(k = 0 \text{ (mod } 6)\) based on the modular constraints derived from the indices of the coefficients.
  • There are suggestions to use different indexing for clarity in the formulation of the polynomials.
  • Multiple participants affirm that the approach taken is correct and acceptable.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the method used to find the coefficient, with no significant disagreements noted. However, there is a suggestion for improved clarity in notation.

Contextual Notes

Participants discuss the modular conditions and the range of indices relevant to the coefficients, indicating a focus on non-zero terms in the polynomials.

Who May Find This Useful

This discussion may be useful for those interested in polynomial algebra, combinatorial reasoning, and modular arithmetic in mathematical contexts.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

"Let the polynomials
$$f(x)=1+\sum_{k=1}^{8}{(2k)x^{2k}} \text{ and } g(x)=1+ \sum_{k=1}^{8}{(3k)x^{3k}}$$
of $\mathbb{Q}$. Without calculating $f(x)g(x)$, find the coefficient of $x^{21}$ at $f(x)g(x)$."
Let's consider $f(x)=\sum_{k=0}^{\infty}{a_kx^k}$ and $g(x)=\sum_{k=0}^{\infty}{b_kx^k}$

So the following coefficients exist:
\begin{matrix}
a_0 & b_0 \\
a_2 & b_3 \\
a_4 & b_6 \\
a_6 & b_9 \\
a_8 & b_{12} \\
a_{10} & b_{15} \\
a_{12} & b_{18} \\
a_{14} & b_{21} \\
a_{16} & b_{24} \\
\end{matrix}

Since $c_{21}=\sum_{i+j=21}{a_i b_j}$, we have to find each time two coefficients for which the sum of their indices is equal to $21$. So:
$a_0, b_{21}$
$a_6, b_{15}$
$a_{12}, b_9$

Therefore, $c_8=a_0 b_{21}+a_6 b_{15}+ a_{12} b_9=21+6 \cdot 15+ 12 \cdot 9=219$.

Is this correct?
Is the way I solved it ok, or is there a better way to write it?
 
Last edited by a moderator:
Physics news on Phys.org
That's fine.

What you are doing is solving:

$k = 0\text{ (mod }2)$
$21 - k = 0\text{ (mod }3)$

The second equation is clearly the same as:

$k = 0\text{ (mod }3)$ so together we get:

$k = 0\text{ (mod }6)$

Then we just find these values of $k$ with $0 \leq k \leq 16$ (since that's as high as the non-zero a's go).

*****

You should probably have used another index besides $k$, in your second formulation of $f$ and $g$. What you are interested in is the non-zero terms (technically ALL the terms "exist").
 
Deveno said:
That's fine.

What you are doing is solving:

$k = 0\text{ (mod }2)$
$21 - k = 0\text{ (mod }3)$

The second equation is clearly the same as:

$k = 0\text{ (mod }3)$ so together we get:

$k = 0\text{ (mod }6)$

Then we just find these values of $k$ with $0 \leq k \leq 16$ (since that's as high as the non-zero a's go).

*****

You should probably have used another index besides $k$, in your second formulation of $f$ and $g$. What you are interested in is the non-zero terms (technically ALL the terms "exist").

Aha! Ok!
So is the way I formulated the solution nice? Or is there a better way to express it?
 
What you have done is fine, and correct.
 
Deveno said:
What you have done is fine, and correct.

Great! Thanks a lot! (Smirk)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K