Find the coefficient of x^{21} without calculating the product

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Coefficient Product
Click For Summary
SUMMARY

The discussion focuses on finding the coefficient of \(x^{21}\) in the product of two polynomials, \(f(x) = 1 + \sum_{k=1}^{8}(2k)x^{2k}\) and \(g(x) = 1 + \sum_{k=1}^{8}(3k)x^{3k}\), without directly calculating the product. The coefficient \(c_{21}\) is derived from the combinations of coefficients \(a_i\) and \(b_j\) such that \(i + j = 21\). The final calculation yields \(c_{21} = 219\), confirming the correctness of the approach taken by the participants in the discussion.

PREREQUISITES
  • Understanding of polynomial functions and their coefficients
  • Familiarity with modular arithmetic, specifically \(k \equiv 0 \mod n\)
  • Knowledge of generating functions and series expansions
  • Ability to manipulate and combine series for coefficient extraction
NEXT STEPS
  • Study polynomial multiplication techniques in combinatorial contexts
  • Explore generating functions for combinatorial enumeration
  • Learn about modular arithmetic applications in number theory
  • Investigate advanced topics in series expansions and their coefficients
USEFUL FOR

Mathematicians, students studying combinatorics, and anyone interested in polynomial algebra and coefficient extraction techniques.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

"Let the polynomials
$$f(x)=1+\sum_{k=1}^{8}{(2k)x^{2k}} \text{ and } g(x)=1+ \sum_{k=1}^{8}{(3k)x^{3k}}$$
of $\mathbb{Q}$. Without calculating $f(x)g(x)$, find the coefficient of $x^{21}$ at $f(x)g(x)$."
Let's consider $f(x)=\sum_{k=0}^{\infty}{a_kx^k}$ and $g(x)=\sum_{k=0}^{\infty}{b_kx^k}$

So the following coefficients exist:
\begin{matrix}
a_0 & b_0 \\
a_2 & b_3 \\
a_4 & b_6 \\
a_6 & b_9 \\
a_8 & b_{12} \\
a_{10} & b_{15} \\
a_{12} & b_{18} \\
a_{14} & b_{21} \\
a_{16} & b_{24} \\
\end{matrix}

Since $c_{21}=\sum_{i+j=21}{a_i b_j}$, we have to find each time two coefficients for which the sum of their indices is equal to $21$. So:
$a_0, b_{21}$
$a_6, b_{15}$
$a_{12}, b_9$

Therefore, $c_8=a_0 b_{21}+a_6 b_{15}+ a_{12} b_9=21+6 \cdot 15+ 12 \cdot 9=219$.

Is this correct?
Is the way I solved it ok, or is there a better way to write it?
 
Last edited by a moderator:
Physics news on Phys.org
That's fine.

What you are doing is solving:

$k = 0\text{ (mod }2)$
$21 - k = 0\text{ (mod }3)$

The second equation is clearly the same as:

$k = 0\text{ (mod }3)$ so together we get:

$k = 0\text{ (mod }6)$

Then we just find these values of $k$ with $0 \leq k \leq 16$ (since that's as high as the non-zero a's go).

*****

You should probably have used another index besides $k$, in your second formulation of $f$ and $g$. What you are interested in is the non-zero terms (technically ALL the terms "exist").
 
Deveno said:
That's fine.

What you are doing is solving:

$k = 0\text{ (mod }2)$
$21 - k = 0\text{ (mod }3)$

The second equation is clearly the same as:

$k = 0\text{ (mod }3)$ so together we get:

$k = 0\text{ (mod }6)$

Then we just find these values of $k$ with $0 \leq k \leq 16$ (since that's as high as the non-zero a's go).

*****

You should probably have used another index besides $k$, in your second formulation of $f$ and $g$. What you are interested in is the non-zero terms (technically ALL the terms "exist").

Aha! Ok!
So is the way I formulated the solution nice? Or is there a better way to express it?
 
What you have done is fine, and correct.
 
Deveno said:
What you have done is fine, and correct.

Great! Thanks a lot! (Smirk)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K