MHB Find the constants given the domain and range

Click For Summary
To find constants B and C for the function y = f(x) with a domain of 1 ≤ x ≤ 6 transformed to 8 ≤ x ≤ 9, B must be positive, allowing for algebraic manipulation to create two equations based on the endpoints. For the second part, to adjust the range of Af(x) + D from −3 ≤ y ≤ 5 to 0 ≤ y ≤ 1, constants A and D can be determined by setting up equations that align the new range with the original. The discussion emphasizes the need for algebraic relationships to solve for the constants effectively. Understanding the composition of functions is crucial for these transformations. The thread highlights the importance of correctly applying function transformations in pre-calculus.
bcast
Messages
1
Reaction score
0
Suppose you have a function y = f(x) such that the domain of f(x) is 1 ≤ x ≤ 6 and the range of f(x) is −3 ≤ y ≤ 5.

a) Find constants B and C so that the domain of f(B(x − C)) is 8 ≤ x ≤ 9
B=
C=

b) Find constants A and D so that the range of Af(x) + D is 0 ≤ y ≤ 1
A=
D=

I'm working on composition of functions and completely lost at this point.
 
Mathematics news on Phys.org
Hello and welcome to MHB, bcast!

I have moved your topic from the Analysis forum as this is a Pre-calculus topic.

For the first problem, I would begin with the function's new domain:

$$8\le x\le9$$

Now, assuming $B$ is positive, can you algebraically get $B(x-C)$ in the middle, and then equating the end-points to the originals, you will have two equations in two unknowns?
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K