Find the diameter of one circle

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Circle Diameter
Click For Summary
SUMMARY

The problem involves finding the diameter of one circle formed by five identical semicircles arranged in a specific configuration. The solution reveals that the total diameter is calculated by summing the gaps between the semicircles, resulting in a diameter of 36 units. The discussion emphasizes a non-algebraic approach to solving the problem, which is particularly relevant for Singapore primary math education. The contributors share various methods and diagrams to illustrate their reasoning.

PREREQUISITES
  • Understanding of semicircles and their properties
  • Basic geometric concepts related to diameter and circumference
  • Familiarity with visual representation of geometric problems
  • Knowledge of non-algebraic problem-solving techniques
NEXT STEPS
  • Explore geometric properties of circles and semicircles
  • Learn about visual problem-solving strategies in mathematics
  • Investigate Singapore math techniques for primary education
  • Practice similar problems involving arrangements of geometric shapes
USEFUL FOR

Mathematics educators, primary school students, and anyone interested in enhancing their problem-solving skills in geometry.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Five identical semicircles are arranged as shown. Find the diameter of one circle.
[TIKZ]
\draw (0,0) -- (16.5, 0);
\begin{scope}
\clip (0,0) rectangle (4.5,4.5);
\draw (2.25,0) circle(2.25);
\draw (0,0) -- (4.5,0);
\end{scope}
\begin{scope}
\clip (6,0) rectangle (10.5,4.5);
\draw (8.25,0) circle(2.25);
\draw (6,0) -- (10.5,0);
\end{scope}
\begin{scope}
\clip (12,0) rectangle (16.5,4.5);
\draw (14.25,0) circle(2.25);
\draw (12,0) -- (16.5,0);
\end{scope}
\begin{scope}
\clip (2.75,0) rectangle (7.25,-4.5);
\draw (5,0) circle(2.25);
\draw (2.75,0) -- (7.25,0);
\end{scope}
\begin{scope}
\clip (9.25,0) rectangle (13.75,-4.5);
\draw (11.5,0) circle(2.25);
\draw (9.25,0) -- (13.75,0);
\end{scope}
\draw [<->] (4.5, 0.5) -- (6, 0.5);
\draw [<->] (10.5, 0.5) -- (12, 0.5);
\draw [<->] (0, -0.5) -- (2.75, -0.5);
\draw [<->] (7.25, -0.5) -- (9.25, -0.5);
\draw [<->] (13.75, -0.5) -- (16.5, -0.5);
\coordinate[label=left:12] (A) at (5.5,0.8);
\coordinate[label=left:12] (B) at (11.5,0.8);
\coordinate[label=left:22] (C) at (1.6,-0.8);
\coordinate[label=left:16] (D) at (8.6,-0.8);
\coordinate[label=left:22] (D) at (15.6,-0.8);
[/TIKZ]

As this is a Singapore primary math problem, it is understandable that one can solve it without the use of algebra method (form an equation and solve the equation is what I mean by algebra method). I enjoyed this problem quite a bit, therefore I wanted to post it here to let others to try to solve it without the use of algebra method...:)
 
Mathematics news on Phys.org
I would say that the sums of the gaps are 24 (above) and 60 (below). As there is one more semicircle above, its diameter is equal to the difference 36.
 
Thanks castor28 for your reply!

But, I still count that as an algebra method, hehehe...I will let others have a chance to take a stab at it before I post the so called without-algebra solution. Please stay tuned! :)
 
Hi castor28!

I don't know where my head was when I made the previous reply (Tmi) , I'm so sorry!(Sadface) Your answer is spot on!

Here is a diagram to illustrate a slightly different approach than castors28's method:

[TIKZ]
\draw (0,0) -- (16.5, 0);
\begin{scope}
\clip (0,0) rectangle (4.5,4.5);
\draw (2.25,0) circle(2.25);
\draw (0,0) -- (4.5,0);
\end{scope}
\begin{scope}
\clip (6,0) rectangle (10.5,4.5);
\draw (8.25,0) circle(2.25);
\draw (6,0) -- (10.5,0);
\end{scope}
\begin{scope}
\clip (12,0) rectangle (16.5,4.5);
\draw (14.25,0) circle(2.25);
\draw (12,0) -- (16.5,0);
\end{scope}
\begin{scope}
\clip (0,0) rectangle (4.5,-4.5);
\draw (2.25,0) circle(2.25);
\draw (0,0) -- (4.5,0);
\end{scope}
\begin{scope}
\clip (12,0) rectangle (16.5,-4.5);
\draw (14.25,0) circle(2.25);
\draw (12,0) -- (16.5,0);
\end{scope}
\draw [<->] (4.5, 0.5) -- (6, 0.5);
\draw [<->] (10.5, 0.5) -- (12, 0.5);
\draw [<->] (4.5, -0.5) -- (6, -0.5);
\draw [<->] (7.25, -0.5) -- (9.25, -0.5);
\draw [<->] (10.5, -0.5) -- (12, -0.5);
\draw [<->] (6, -0.5) -- (7.25, -0.5);
\draw [<->] (9.25, -0.5) -- (10.5, -0.5);
\coordinate[label=left:12] (A) at (5.5,0.8);
\coordinate[label=left:12] (B) at (11.5,0.8);
\coordinate[label=left:12] (C) at (5.5,-0.8);
\coordinate[label=left:16] (D) at (8.6,-0.8);
\coordinate[label=left:12] (D) at (11.5,-0.8);
\coordinate[label=left:10] (E) at (6.9,-0.8);
\coordinate[label=left:10] (F) at (10.1,-0.8);
[/TIKZ]

$\therefore \text{diameter}=10+16+10=36$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
6K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K