MHB Find the equation of the plane given a point and two planes

AI Thread Summary
To find the equation of a plane that passes through the point (1,3,8) and is perpendicular to the line of intersection of the planes defined by 3x−2z+1=0 and 4x+3y+7=0, the cross product of the normals of these planes is needed to determine the direction vector. The equation can be expressed in various forms, but using the point is essential for defining a unique plane. The general form of the plane's equation can be written as n1(x - 1) + n2(y - 3) + n3(z - 8) = 0, where N is the direction vector obtained from the cross product. This approach ensures the plane is correctly defined relative to the given point and the intersection of the planes.
sawdee
Messages
12
Reaction score
0
I've done a question similar to this, however this one has no complete equations i can solve for.

Determine the equation of the plane that passes through (1,3,8) and is perpendicular to the line of intersection of the planes 3x−2z+1=0 and 4x+3y+7=0.

I know to take the cross product of the two normals to get my new direction vector, but I am stuck at that point. What form should this be written in and further, can I use the given point?
 
Last edited by a moderator:
Mathematics news on Phys.org
sawdee said:
I've done a question similar to this, however this one has no complete equations i can solve for.
You're asked to find the equation of the plane with the given point

sawdee said:
Determine the equation of the plane that passes through (1,3,8) and is perpendicular to the line of intersection of the planes 3x−2z+1=0 and 4x+3y+7=0.

sawdee said:
I know to take the cross product of the two normals to get my new direction vector,
Yes, that will work.

sawdee said:
but I am stuck at that point. What form should this be written in and further, can I use the given point?
There are several different forms of the equation of a plane, so unless the grader is especially particular, it doesn't matter much what form you use.
You have to use the given point in order to get a unique plane. If N is the direction of the intersection of the given planes (and hence is normal to the plane you want), then the equation of the plane is ##n_1(x - 1) + n_2(y - 3) + n_3(z -8) = 0##, where ##\vec N = <n_1, n_2, n_3>##.
 
  • Like
Likes Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top