MHB Find the factors using a complete square

Click For Summary
The expression $x^2 + 2ax + a^2$ can be rewritten as the complete square $(a + x)^2$. To find the factors of $x^2 + 2ax + a^2 - 9$, it can be expressed as $(a + x)^2 - 9$. This further simplifies to the difference of squares, resulting in the factors $(a + x - 3)(a + x + 3). The discussion emphasizes the application of completing the square and factoring techniques. Understanding these methods is crucial for solving quadratic expressions effectively.
mathlearn
Messages
331
Reaction score
0
Problem

First you are asked to,

write this expression as a complete square $x^2+2ax+a^2$

& ii. Using that find the factors of $x^2+2ax+a^2-9$

Workings

i $(a + x)^2$

Where do I need help

ii. Using that find the factors of $x^2+2ax+a^2-9$

Many Thanks :)
 
Mathematics news on Phys.org
mathlearn said:
Problem

First you are asked to,

write this expression as a complete square $x^2+2ax+a^2$

& ii. Using that find the factors of $x^2+2ax+a^2-9$

Workings

i $(a + x)^2$

Where do I need help

ii. Using that find the factors of $x^2+2ax+a^2-9$

Many Thanks :)

You want to factorize $(a+x)^2-9$. But this is same as $(a+x)^2-3^2=(a+x-3)(a+x+3)$.
 
caffeinemachine said:
You want to factorize $(a+x)^2-9$. But this is same as $(a+x)^2-3^2=(a+x-3)(a+x+3)$.

Thank you very much caffeinemachine :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K