MHB Find the intersection value of 3 subsets

AI Thread Summary
To find the intersection of three subsets A, B, and C, the values provided include the sizes of each subset and their pairwise intersections. The total number of elements in the union of the subsets is given as 139. The correct formula for calculating the intersection of all three subsets is n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(A ∩ C) + n(A ∩ B ∩ C). Using the provided values, the intersection of A, B, and C is determined to be 10.
schinb65
Messages
12
Reaction score
0
Let a, b and c be three subsets of universe U with the following properties: n(A)= 63, n(B)=91, n(c)=44, The intersection of (A&B)= 25, The intersection of (A&C)=23, The intersection of (C&B)=21, n(A U B U C)= 139. Find the intersection of (A&B&C).

I am told the answer is 10. I tried drawing a diagram.

A: B: C:
x x x
25-x 21-x 23-x
23-x 25-x 21-x
63-(x + 21-x + 23-x) 91-(x+25-x+21-x) 44-(x+23-x+21-x)I added all of these together and had them equal to 198, since I am using values repeatedly. I also omitted the repeats and set the sum to 139. This should give me the correct answer correct?
 
Physics news on Phys.org
schinb65 said:
Let a, b and c be three subsets of universe U with the following properties: n(A)= 63, n(B)=91, n(c)=44, The intersection of (A&B)= 25, The intersection of (A&C)=23, The intersection of (C&B)=21, n(A U B U C)= 139. Find the intersection of (A&B&C).

I am told the answer is 10. I tried drawing a diagram.

A: B: C:
x x x
25-x 21-x 23-x
23-x 25-x 21-x
63-(x + 21-x + 23-x) 91-(x+25-x+21-x) 44-(x+23-x+21-x)I added all of these together and had them equal to 198, since I am using values repeatedly. I also omitted the repeats and set the sum to 139. This should give me the correct answer correct?
What you have written in the last paragraph is essentially what you need to do. I don't understand the rest of your attempt though but I think you are on the right track. You might find this useful Inclusion
 
Hello, schinb65!

Let $A, B, C$ be three subsets of universe $U$ with the following properties:

. . $\begin{array}{c}n(A)\,=\, 63 \\ n(B)\,=\,91 \\ n(C)\,=\,44\end{array} \qquad \begin{array}{c} n(A\cap B) \,=\,25 \\ n(B\cap C) \,=\,21 \\ n(A\cap C) \,=\, 23 \end{array} \qquad n(A\cup B \cup C) \,=\,139 $

Find: $ n(A \cap B\cap C)$
Are you familiar with this formula?

$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) $

. . . . . . . . . . . . . . $+\,n(A \cap B) + n(B \cap C) + n(A \cap C) $

. . . . . . . . . . . . . . . . $+ n(A \cap B \cap C)$
 
soroban said:
Hello, schinb65!


Are you familiar with this formula?

$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) $

. . . . . . . . . . . . . . $+\,n(A \cap B) + n(B \cap C) + n(A \cap C) $

. . . . . . . . . . . . . . . . $+ n(A \cap B \cap C)$

Hi soroban,

I think what you meant was this:
$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) -\,n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$.

Just a typo I think :)

Jameson
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top