Find the intersection value of 3 subsets

Click For Summary

Discussion Overview

The discussion revolves around finding the intersection of three subsets A, B, and C within a universal set U, given specific cardinalities and intersection values. Participants explore the application of set theory principles, particularly focusing on the inclusion-exclusion principle.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant presents the problem with the cardinalities of subsets and their intersections, suggesting the answer is 10.
  • Another participant agrees with the approach but expresses confusion about the initial reasoning, indicating that the method of summing values might be on the right track.
  • Several participants reference the inclusion-exclusion principle, with one providing the formula for calculating the union of three sets.
  • A later reply corrects a perceived typo in the formula presented, clarifying the correct inclusion-exclusion expression.

Areas of Agreement / Disagreement

Participants generally agree on the use of the inclusion-exclusion principle, but there is some confusion regarding the application of the formula and the initial reasoning presented. The discussion remains unresolved regarding the correct calculation of the intersection value.

Contextual Notes

Some participants express uncertainty about the initial calculations and the handling of repeated values in the summation. There are also unresolved aspects regarding the application of the inclusion-exclusion principle.

schinb65
Messages
12
Reaction score
0
Let a, b and c be three subsets of universe U with the following properties: n(A)= 63, n(B)=91, n(c)=44, The intersection of (A&B)= 25, The intersection of (A&C)=23, The intersection of (C&B)=21, n(A U B U C)= 139. Find the intersection of (A&B&C).

I am told the answer is 10. I tried drawing a diagram.

A: B: C:
x x x
25-x 21-x 23-x
23-x 25-x 21-x
63-(x + 21-x + 23-x) 91-(x+25-x+21-x) 44-(x+23-x+21-x)I added all of these together and had them equal to 198, since I am using values repeatedly. I also omitted the repeats and set the sum to 139. This should give me the correct answer correct?
 
Physics news on Phys.org
schinb65 said:
Let a, b and c be three subsets of universe U with the following properties: n(A)= 63, n(B)=91, n(c)=44, The intersection of (A&B)= 25, The intersection of (A&C)=23, The intersection of (C&B)=21, n(A U B U C)= 139. Find the intersection of (A&B&C).

I am told the answer is 10. I tried drawing a diagram.

A: B: C:
x x x
25-x 21-x 23-x
23-x 25-x 21-x
63-(x + 21-x + 23-x) 91-(x+25-x+21-x) 44-(x+23-x+21-x)I added all of these together and had them equal to 198, since I am using values repeatedly. I also omitted the repeats and set the sum to 139. This should give me the correct answer correct?
What you have written in the last paragraph is essentially what you need to do. I don't understand the rest of your attempt though but I think you are on the right track. You might find this useful Inclusion
 
Hello, schinb65!

Let $A, B, C$ be three subsets of universe $U$ with the following properties:

. . $\begin{array}{c}n(A)\,=\, 63 \\ n(B)\,=\,91 \\ n(C)\,=\,44\end{array} \qquad \begin{array}{c} n(A\cap B) \,=\,25 \\ n(B\cap C) \,=\,21 \\ n(A\cap C) \,=\, 23 \end{array} \qquad n(A\cup B \cup C) \,=\,139 $

Find: $ n(A \cap B\cap C)$
Are you familiar with this formula?

$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) $

. . . . . . . . . . . . . . $+\,n(A \cap B) + n(B \cap C) + n(A \cap C) $

. . . . . . . . . . . . . . . . $+ n(A \cap B \cap C)$
 
soroban said:
Hello, schinb65!


Are you familiar with this formula?

$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) $

. . . . . . . . . . . . . . $+\,n(A \cap B) + n(B \cap C) + n(A \cap C) $

. . . . . . . . . . . . . . . . $+ n(A \cap B \cap C)$

Hi soroban,

I think what you meant was this:
$n(A \cup B \cup C) \:=\:n(A) + n(B) + n(C) -\,n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$.

Just a typo I think :)

Jameson
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K