MHB Find the inverse of this function. .

  • Thread starter Thread starter checkitagain
  • Start date Start date
  • Tags Tags
    Function Inverse
checkitagain
Messages
137
Reaction score
1
>
f(x) \ = \ \dfrac{1 - \sqrt{x}}{1 + \sqrt{x}}
 
Mathematics news on Phys.org
checkittwice said:
>
f(x) \ = \ \dfrac{1 - \sqrt{x}}{1 + \sqrt{x}}

Hi checkittwice,

Let, \(y = \dfrac{1 - \sqrt{x}}{1 + \sqrt{x}}\)

\[y(1-x)=(1-\sqrt{x})^2\]

\[y(1-x)=1-2\sqrt{x}+x\]

\[(y-yx-x-1)^2=4x\]

\[((y-1)-x(y+1))^2=4x\]

\[(y+1)^{2}x^2-2(y-1)(y+1)x+(y-1)^2=4x\]

\[(y+1)^{2}x^2-\left\{2(y-1)(y+1)+4\right\}x+(y-1)^2=0\]

\[x=\frac{\left\{2(y-1)(y+1)+4\right\}\pm\sqrt{\left\{2(y-1)(y+1)+4\right\}^2-4(y+1)^{2}(y-1)^2}}{2(y+1)^{2}}\]

\[x=\frac{\left\{2(y-1)(y+1)+4\right\}\pm\sqrt{16+16(y-1)(y+1)}}{2(y+1)^{2}}\]

\[x=\frac{\left\{2(y-1)(y+1)+4\right\}\pm 4|y|}{2(y+1)^{2}}\]

\[x=\frac{y^2\pm 2|y|+1}{(y+1)^{2}}\]

If we use the positive sign, \(x=1\) whenever \(y\geq 0\). Similarly if we use the negative sign, \(x=1\) whenever \(y\leq 0\). Both of these are not true considering our original equation. Therefore the only possibility is to use the positive sign when \(y<0\) and the negative sign when \(y\geq 0\). This gives us,

\[x = \frac{(y-1)^2}{(y+1)^{2}}\]
 
Sudharaka said:
\[x = \frac{(y-1)^2}{(y+1)^{2}}\] ? ? ?

Sudharaka,

here are two observations/prompts:

1) Nowhere in your work did you ever interchange x any y.

2) Suppose you were to interchange x and y to get

y \ = \ \dfrac{(x - 1)^2}{(x + 1)^2}Would that be a one-to-one function?

Or, would you have to restrict the domain (and state it as such)
to get the correct inverse?

The problem is still open.
 
checkittwice said:
Sudharaka,

here are two observations/prompts:

1) Nowhere in your work did you ever interchange x any y.

2) Suppose you were to interchange x and y to get

y \ = \ \dfrac{(x - 1)^2}{(x + 1)^2}Would that be a one-to-one function?

Or, would you have to restrict the domain (and state it as such)
to get the correct inverse?

The problem is still open.

Hi checkittwice,

In my final answer \(y\) is the independent variable and \(x\) is the dependent variable. I thought it would be understood and did not interchange \(x\) and \(y\). I hope this is the thing that you mentioned in your first statement.

And of course I forgot to mention about the domain of the inverse in my first post. In the original function, \(x\geq 0\). Therefore in the inverse function; \(\displaystyle y \ = \ \dfrac{(x - 1)^2}{(x + 1)^2}\) we have to make \(y\geq 0\). For that \(x\geq 1\). So the inverse function would be,

\[\displaystyle y \ = \ \dfrac{(x - 1)^2}{(x + 1)^2}\mbox{ where }x\geq 1\]
 
We can express x through y more simply:

y(1+\sqrt{x})=1-\sqrt{x}
y+y\sqrt{x}=1-\sqrt{x}
\sqrt{x}(1+y)=1-y
\sqrt{x}=\frac{1-y}{1+y}
x=\left(\frac{1-y}{1+y}\right)^2

Also, one can check for the original function that when x\in[0,\infty), one has -1&lt;y\le 1. The latter inequality determines the domain of the inverse function.
 
Sudharaka said:
Hi checkittwice,

In my final answer \(y\) is the independent variable and \(x\) is the dependent variable.
I thought it would be understood and did not interchange \(x\) and \(y\).

>The value of f^{-1}(x)depends on what x equals.

>You can't go by what you "understood" if the problem isn't finished as typed
by you.

>For example, if I were to ask for the inverse of y = f(x) = 0.5x, someone would
not answer with 2y = x. They would answer with f^{-1}(x) \ = \ 2x.

>My first statement of my second post in this thread is redundant, because
the inverse will be of the form f^{-1}(x) = an expression in terms of x.I hope this is the thing that you mentioned in your first statement.
...

And as alluded to by Evgeny.Makarov, the domain of the desired
inverse will reflect the range of the original function.

So, to clear things up, the inverse is:f^{-1}(x) \ = \ \ \dfrac{(x - 1)^2}{(x + 1)^2}, \ \ -1&lt; x \le 1.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top