MHB Find the lengths of the sides of a triangle

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the lengths of the sides of a triangle with 14, 22 and 28 as the lengths of its altitude.
 
Mathematics news on Phys.org
anemone said:
Find the lengths of the sides of a triangle with 14, 22 and 28 as the lengths of its altitude.

let the lengths opposite to altitudes of lengths 14,22,28 be x,y,z
then 2 times area
$14x = 22 y = 28 z$
or $x:: y:: z = \frac{1}{14}::\frac{1}{22}:: \frac{1}{28} = 44::28:: 22$(note all kept even to avoid fraction in computation )
so let x= 44t, y = 28t, z = 22t
area = $\dfrac{14x}{2}= 7x = 7 * 44 t = 308t$
using heros formula ( we get $s= \frac{44+28+22}{2}=47$)
$area = \sqrt{47*(47-44)*(47-28)*(47-22)}t^2 = \sqrt{47* 3 * 19* 25}t^2$
or $area = 5\sqrt{47*57}= 5\sqrt{2679}t^2$
so $308t = 5 \sqrt{2679}t^2$
or $t=\frac{308}{5\sqrt{2679}}$
so the sides are
$44t,28t,22t$ where t is as above
 
Last edited:
kaliprasad said:
let the lengths opposite to altitudes of lengths 14,22,28 be x,y,z
then 2 times area
$14x = 22 y = 28 z$
or $x:: y:: z = \frac{1}{14}::\frac{1}{22}:: \frac{1}{28} = 44::28:: 22$(note all kept even to avoid fraction in computation )
so let x= 44t, y = 28t, z = 22t
area = $\dfrac{14x}{2}= 7x = 7 * 44 t = 308t$
using heros formula ( we get $s= \frac{44+28+22}{2}=47$)
$area = \sqrt{47*(47-44)*(47-28)*(47-22)}t^2 = \sqrt{47* 3 * 19* 25}t^2$
or $area = 5\sqrt{47*57}= 5\sqrt{2679}t^2$
so $308t = 5 \sqrt{2679}t^2$
or $t=\frac{308}{5\sqrt{2679}}$
so the sides are
$44t,28t,22t$ where t is as above

Well done, kaliprasad!
 
a = 52.3657142876
b = 33.3236363648
c = 26.1828571438

From Wikipedia:
"Next, denoting the altitudes from sides a, b, and c respectively as ha, hb, and hc, and denoting the semi-sum of the reciprocals of the altitudes as H = (h_a^{-1} + h_b^{-1} + h_c^{-1})/2 we have[11]
A^{-1} = 4 \sqrt{H(H-h_a^{-1})(H-h_b^{-1})(H-h_c^{-1})}."
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top