Find the location knowing the resonance using Kepler's third law

  • Thread starter Thread starter Kovac
  • Start date Start date
  • Tags Tags
    Resonance
AI Thread Summary
To find the location of celestial bodies in a 4:1 or 3:1 mean motion resonance with Jupiter using Kepler's third law, the orbital period (P) of the resonant body should be calculated as a fraction of Jupiter's orbital period. For a 4:1 resonance, P would be set to 1/4 of Jupiter's period, and the semi-major axis (a) can then be determined using the formula a^3 = P^2. The discussion also raises a question about the dimensional analysis of the formula, specifically how time squared relates to length cubed. Understanding the variables involved in these resonances and their directional implications is crucial for accurate calculations. The conversation emphasizes the importance of careful unit consideration when applying Kepler's laws.
Kovac
Messages
13
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

I need to find the location of following bodies MMR with Jupiter: 4:1, 3:1, with the help of Keplers third law.Keplers third law:
1697974988128.png
, where P is the orbital period in Earth years, a= semi major axis in AU.
For Jupiter: Pj =
1697975054421.png
years.

Now my question is, to find the location of 4:1, should I simply take 1/4 * Pj as the new P? (Since 4 orbits are made with each Jupiter orbit)
And then use the formula again with
1697974988128.png
to find the position for a? Meaning I need to solve for a with the new P?
 
Physics news on Phys.org
I'd think a bit about units/dimensions first! How can a time squared equal a length cubed?
 
Could you explain in words what this phrase means?
Kovac said:
MMR with Jupiter: 4:1, 3:1,
Such as: to what variables do the 4:1 and 3:1 apply, and in which direction?

Cheers,
Tom
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...

Similar threads

Back
Top