Find the location knowing the resonance using Kepler's third law

  • Thread starter Thread starter Kovac
  • Start date Start date
  • Tags Tags
    Resonance
AI Thread Summary
To find the location of celestial bodies in a 4:1 or 3:1 mean motion resonance with Jupiter using Kepler's third law, the orbital period (P) of the resonant body should be calculated as a fraction of Jupiter's orbital period. For a 4:1 resonance, P would be set to 1/4 of Jupiter's period, and the semi-major axis (a) can then be determined using the formula a^3 = P^2. The discussion also raises a question about the dimensional analysis of the formula, specifically how time squared relates to length cubed. Understanding the variables involved in these resonances and their directional implications is crucial for accurate calculations. The conversation emphasizes the importance of careful unit consideration when applying Kepler's laws.
Kovac
Messages
13
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

I need to find the location of following bodies MMR with Jupiter: 4:1, 3:1, with the help of Keplers third law.Keplers third law:
1697974988128.png
, where P is the orbital period in Earth years, a= semi major axis in AU.
For Jupiter: Pj =
1697975054421.png
years.

Now my question is, to find the location of 4:1, should I simply take 1/4 * Pj as the new P? (Since 4 orbits are made with each Jupiter orbit)
And then use the formula again with
1697974988128.png
to find the position for a? Meaning I need to solve for a with the new P?
 
Physics news on Phys.org
I'd think a bit about units/dimensions first! How can a time squared equal a length cubed?
 
Could you explain in words what this phrase means?
Kovac said:
MMR with Jupiter: 4:1, 3:1,
Such as: to what variables do the 4:1 and 3:1 apply, and in which direction?

Cheers,
Tom
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Back
Top