Find the magnitude of the momentum change of the ball?

AI Thread Summary
The discussion focuses on calculating the momentum change of a tennis ball during an elastic collision. The user identifies that in the y-direction, momentum remains unchanged, while in the x-direction, it changes due to opposite velocity vectors. They derive the momentum change as Δp = -2mvcosθ, indicating a significant change in momentum. The responses confirm that the calculations are correct. The final answer aligns with option (D) 2mv cos θ, confirming the user's understanding of the problem.
paulimerci
Messages
287
Reaction score
47
Homework Statement
A tennis ball of mass m rebounds from a racquet with the same speed v as it had
initially as shown. The magnitude of the momentum change of the ball is
(A) 0 (B) 2mv (C) 2mv sin theta (D) 2mv cos theta
Relevant Equations
Conservation of momentum
I understand that it is a 2D momentum problem with an elastic collision;
Looking at the vector diagrams below, I notice that the velocity vectors initial and final in the y direction are in the same direction, indicating that momentum does not change, whereas the velocity vectors initial and final in the x direction are opposite each other, indicating that momentum does change.
Therfore,
$$ \Delta p = p_f - p_i$$
$$ = -mvcos\theta -mvcos\theta$$
$$ \Delta p = -2mvcos\theta$$

Have I done it right?
 

Attachments

  • Screenshot 2023-02-11 at 9.27.16 AM.png
    Screenshot 2023-02-11 at 9.27.16 AM.png
    4.6 KB · Views: 187
  • Screenshot 2023-02-11 at 9.27.05 AM.png
    Screenshot 2023-02-11 at 9.27.05 AM.png
    8.4 KB · Views: 129
Physics news on Phys.org
paulimerci said:
Homework Statement:: A tennis ball of mass m rebounds from a racquet with the same speed v as it had
initially as shown. The magnitude of the momentum change of the ball is
(A) 0 (B) 2mv (C) 2mv sin theta (D) 2mv cos theta
Relevant Equations:: Conservation of momentum

I understand that it is a 2D momentum problem with an elastic collision;
Looking at the vector diagrams below, I notice that the velocity vectors initial and final in the y direction are in the same direction, indicating that momentum does not change, whereas the velocity vectors initial and final in the x direction are opposite each other, indicating that momentum does change.
Therfore,
$$ \Delta p = p_f - p_i$$
$$ = -mvcos\theta -mvcos\theta$$
$$ \Delta p = -2mvcos\theta$$

Have I done it right?
Looks good.
 
TSny said:
Looks good.
Thank you!
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top