MHB Find the minimal value |ac−b|≤b

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The discussion centers on finding the minimal value of the expression $\frac{a}{b}$ for positive integer triples $(a, b, c)$ that meet the condition $|a^c - b!| \leq b$. Participants are encouraged to share simpler proofs or alternative approaches to solving the problem. The original poster expresses a desire for a more straightforward solution. The conversation highlights the challenge of the problem while inviting collaboration for potential insights. The search for a minimal value remains open, emphasizing the complexity of the mathematical relationship involved.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimal value of the expression $\frac{a}{b}$ over all triples $(a, b, c)$ of positive
integers satisfying $|a^c − b!| ≤ b$.
 
Mathematics news on Phys.org
lfdahl said:
Find the minimal value of the expression $\frac{a}{b}$ over all triples $(a, b, c)$ of positive
integers satisfying $|a^c − b!| ≤ b$.
I guess (by instinct) the answer should be $\dfrac {1}{2}$

Am I right ?

I am thinking a method to prove it
 
Albert said:
I guess (by instinct) the answer should be $\dfrac {1}{2}$

Am I right ?

I am thinking a method to prove it

You are right indeed! :cool:
 
lfdahl said:
You are right indeed! :cool:
my way of thinking:
to find $min(\dfrac {a}{b})$, a must be as small as possible, if I set a=1 then c can be any positive integer
from $|a^c − b!| ≤ b $ , we know b cannot be too big,and the only solution for b is 2 and we get the answer 0.5
It is not rigorous,but give us a very quick approach
in fact c can be zero or even negative integers
 
Last edited:
Here is the suggested solution:

The answer is $\frac{1}{2}$.Note, that any triple $(a,b,c) = (1,2,c)$ satisfy the given inequality. So, $\frac{a}{b}$ takes the value

$\frac{1}{2}$. Now, we prove, that there is no other solution for $b \ge 2a$.

Let $t = |a^c-b!|$. If $t > 0$, $1 = \left | \frac{a^c}{t}-\frac{b!}{t} \right |$. Since $t \le b$, $\frac{b!}{t}$ is

an integer, so $\frac{a^c}{t}$ is also an integer. Furthermore, $2a \le b \Rightarrow a, 2a \in \left \{ 1,2,...,b \right \}$.

At least one of $a$ and $2a$ is different from $t$, so it is not canceled out from the product in

$\frac{b!}{t}$. So $a \: | \: \frac{b!}{t}$.

Therefore, since the difference between $\frac{b!}{t}$ and $\frac{a^c}{t}$ is $1$,

$gcd\left ( a,\frac{a^c}{t} \right )=1$ implying $t = a^c$. Thus, we are now left with two cases only: $\left | a^c-b! \right | = 0$ or $\left | a^c-b! \right | = a^c$. These cases reduce to: $b! = a^c$ and $b! = 2a^c$ respectively. Either way, $2a-1 \in \left \{ 1,2,...,b \right \}$,

so $ (2a-1)\: |\: b!\: |\: 2a^c$. Now, $gcd\left (2a-1, 2a^c \right )=1, \Rightarrow 2a-1= 1$ and $a = 1$.If $a = 1$, $b!-b \le 1 \Rightarrow b \le 2$. So, $(a,b) = (1,2)$ is the only solution at $b \ge 2a$. Done.

I would happily welcome a simpler proof, if anyone has a bright idea to a different approach. (Nod)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top