Find the minimal value |ac−b|≤b

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Value
Click For Summary

Discussion Overview

The discussion revolves around finding the minimal value of the expression $\frac{a}{b}$ for positive integer triples $(a, b, c)$ that satisfy the condition $|a^c - b!| \leq b$. The scope includes mathematical reasoning and exploration of potential solutions.

Discussion Character

  • Mathematical reasoning, Exploratory

Main Points Raised

  • One participant presents the problem of minimizing $\frac{a}{b}$ under the given condition involving factorials and powers.
  • Another participant reiterates the problem statement, indicating a focus on the same mathematical challenge.
  • A participant shares their thought process regarding the problem, suggesting they are exploring potential solutions or insights.
  • Another post mentions a suggested solution but expresses a desire for a simpler proof, indicating ongoing exploration and openness to alternative approaches.

Areas of Agreement / Disagreement

The discussion does not indicate any consensus or resolution; multiple viewpoints and approaches are present without agreement on a solution.

Contextual Notes

The discussion does not clarify any assumptions or dependencies that might affect the problem, nor does it resolve any mathematical steps involved in the proposed solutions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimal value of the expression $\frac{a}{b}$ over all triples $(a, b, c)$ of positive
integers satisfying $|a^c − b!| ≤ b$.
 
Mathematics news on Phys.org
lfdahl said:
Find the minimal value of the expression $\frac{a}{b}$ over all triples $(a, b, c)$ of positive
integers satisfying $|a^c − b!| ≤ b$.
I guess (by instinct) the answer should be $\dfrac {1}{2}$

Am I right ?

I am thinking a method to prove it
 
Albert said:
I guess (by instinct) the answer should be $\dfrac {1}{2}$

Am I right ?

I am thinking a method to prove it

You are right indeed! :cool:
 
lfdahl said:
You are right indeed! :cool:
my way of thinking:
to find $min(\dfrac {a}{b})$, a must be as small as possible, if I set a=1 then c can be any positive integer
from $|a^c − b!| ≤ b $ , we know b cannot be too big,and the only solution for b is 2 and we get the answer 0.5
It is not rigorous,but give us a very quick approach
in fact c can be zero or even negative integers
 
Last edited:
Here is the suggested solution:

The answer is $\frac{1}{2}$.Note, that any triple $(a,b,c) = (1,2,c)$ satisfy the given inequality. So, $\frac{a}{b}$ takes the value

$\frac{1}{2}$. Now, we prove, that there is no other solution for $b \ge 2a$.

Let $t = |a^c-b!|$. If $t > 0$, $1 = \left | \frac{a^c}{t}-\frac{b!}{t} \right |$. Since $t \le b$, $\frac{b!}{t}$ is

an integer, so $\frac{a^c}{t}$ is also an integer. Furthermore, $2a \le b \Rightarrow a, 2a \in \left \{ 1,2,...,b \right \}$.

At least one of $a$ and $2a$ is different from $t$, so it is not canceled out from the product in

$\frac{b!}{t}$. So $a \: | \: \frac{b!}{t}$.

Therefore, since the difference between $\frac{b!}{t}$ and $\frac{a^c}{t}$ is $1$,

$gcd\left ( a,\frac{a^c}{t} \right )=1$ implying $t = a^c$. Thus, we are now left with two cases only: $\left | a^c-b! \right | = 0$ or $\left | a^c-b! \right | = a^c$. These cases reduce to: $b! = a^c$ and $b! = 2a^c$ respectively. Either way, $2a-1 \in \left \{ 1,2,...,b \right \}$,

so $ (2a-1)\: |\: b!\: |\: 2a^c$. Now, $gcd\left (2a-1, 2a^c \right )=1, \Rightarrow 2a-1= 1$ and $a = 1$.If $a = 1$, $b!-b \le 1 \Rightarrow b \le 2$. So, $(a,b) = (1,2)$ is the only solution at $b \ge 2a$. Done.

I would happily welcome a simpler proof, if anyone has a bright idea to a different approach. (Nod)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
2K