Find the number of positive integer values

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
SUMMARY

The discussion focuses on determining the number of positive integer values of \( n \) for which the quadratic equation \( 2x^2 + 689x + n = 0 \) has integer solutions. The key finding is that there are exactly 344 positive integer values of \( n \). This conclusion is reached by analyzing the conditions under which the discriminant of the quadratic equation yields integer roots, specifically using the relationship \( n = k(-2k - 689) \) for \( k \in \mathbb{Z} \) and solving the inequalities derived from this equation.

PREREQUISITES
  • Understanding of quadratic equations and their roots
  • Familiarity with the discriminant and its role in determining the nature of roots
  • Basic knowledge of inequalities and integer solutions
  • Experience with algebraic manipulation and factorization techniques
NEXT STEPS
  • Study the properties of quadratic equations, focusing on the discriminant
  • Learn about integer solutions in polynomial equations
  • Explore the implications of inequalities in algebraic contexts
  • Investigate the relationship between roots and coefficients in polynomial factorization
USEFUL FOR

Mathematicians, educators, and students interested in algebra, particularly those focusing on quadratic equations and integer solutions. This discussion is also beneficial for anyone looking to enhance their problem-solving skills in algebraic contexts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

This problem drives me crazy because first, I have not encountered a problem like this before (but this is only an excuse and it must be my incompetence that holds me back from cracking it successfully) and I called off the attempt because I don't think I can solve it.

Problem:

For how many positive integer values of n does the equation $2x^2+689x+n=0$ have an integer solution?

Attempt:

roots$=\dfrac{-689 \pm \sqrt{689^2-8n}}{4}=\dfrac{-689 \pm k}{4}$ where $k=\sqrt{689^2-8n}$ hence

roots$=-172.25+0.25k, -172.25-0.25k$

roots$=-172.25+m-0.25, -172.25-(m-0.25)$ where $m-0.25=0.25k$

roots$=-172.5+m, -172-m$

In order for the original given quadratic equation to have only one integer solution, we see that $m$ must be an integer.

If we work on the product of the roots, we see that

$(-172.5+m)(-172-m)=\dfrac{n}{2}$

which simplifies to

$59340+m-2m^2=n$

Okay, if I let $m=150$ I then get $n=14490$ but I don't believe I have to try out all the possible values of $m$ for this problem.


And I don't know what else I can do to determine the number of positive integers $n$ that the problem asks right from where I stopped.

Any help/advice would be greatly appreciated. Thanks!
 
Mathematics news on Phys.org
Hint: Try using:

$$n=-2k^2-689k$$ where $$k\in\mathbb{Z}$$.

Can you show then that one of the roots must be $x=k$?

And then solve $$n>0$$ to see how many integers you get.
 
MarkFL said:
Hint: Try using:

$$n=-2k^2-689k$$ where $$k\in\mathbb{Z}$$.

Can you show then that one of the roots must be $x=k$?

And then solve $$n>0$$ to see how many integers you get.

Hi MarkFL,

Thanks for helping me out again!

Now everything makes perfect sense to me...the problem told us $n$ is positive integer, and we could rewrite the given quadratic equation to make $n$ the subject and then set its equivalent greater than zero...

So from

$$n=-2k^2-689k$$ where $$k\in\mathbb{Z}$$,

we have

$$n=k(-2k-689)$$

and since the quadratic equation has only one integer root, then $x=k$ must be right and now, if we set $n>0$, we need to consider for two cases. First case deals with the case where $k<0$ and second be the case where $k>0$.

If $k<0$, in order for $n>0$, we see that we must set $-2k-689<0$ or $k>-344.5$.

The number of positive $n$ values that we can get here is hence 344.

The second case gives us zero solution. Therefore, the total number of positive integer values of $n$ such that the equation $2x^2+689x+n=0$ have an integer solution is 344.

Thank you Mark for your help!
 
Last edited:
Yes, I get the same number of values. I found with the value for $n$ I suggested, we get:

$$f(x)=(x-k)\left(2(x+k)+689 \right)=0$$

The first factor gives us the integral root:

$$x=k$$

While the second root is:

$$x=-\left(k+\frac{689}{2} \right)$$

which cannot be an integer for any value of $k$.

In order for $n$ to be a positive integer, we require:

$$2k^2+689k<0$$

$$k(2k+689)<0$$

Thus:

$$-344\le k\le-1$$

And, as you found, there are 344 values $n$ may have to satisfies the given requirements.
 
solution by MARKFL and anemone both good

here is another

let (2x+ a)(x+b) = 2x^2+689x+n

as n is +ve both a and b positive or -ve,

a is odd else 2 integer solutionsor 2x^2 + (a + 2b) = 2x^2+689x+n

a and b cannot - ve as sum is positive

0 < 2b < 689 and hence 0 < b < 344.5

so there are 344 values of b and also n
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
899
Replies
3
Views
1K